Abstract:
A system is provided that includes a display or other support surface to which a repositionable control device may be removably mounted. The display may emit light. The repositionable control device may be a repositionable knob that has light sensors. The display may be directed to emit the light in a predetermined time-varying search pattern while the light sensors make measurements of the emitted light. The repositionable knob may wirelessly transmit the light sensor measurements to control circuitry associated with the display. The control circuitry may process the light sensor measurements or other sensor measurements to determine the location of the repositionable control device on the display. Visible tick marks or other scale information may be displayed around the periphery of the knob. An electromagnetic actuator may provide adjustable detents. Wireless power may be received by the knob.
Abstract:
An interposer for electrically coupling a battery-management circuit board in a power supply and a motherboard is described. The interposer includes: a substrate having a top surface and a bottom surface; first spring connectors, disposed on the top surface, which electrically couple to the battery-management circuit board; and second spring connectors, disposed on the bottom surface and electrically coupled to the first spring connectors, which electrically couple to the motherboard. Spring connectors in a first subset of the first and second spring connectors that convey power signals have a first vertical height, and spring connectors in a second subset of the first and second spring connectors that convey monitoring signals for the power supply have a second, smaller vertical height. In this way, the first subset is activated before the second subset is activated, thereby ensuring that an electrical path for the power signals is established first.
Abstract:
One or more operations in an electronic device can be adjusted based on environment data, such as temperature data and/or humidity data. The electronic device may be, for example, a receiver device or a transmitter device in an inductive energy transfer system. Example operations that may be adjusted based on environmental data include, but are not limited to, the brightness of a display or a haptic output produced by a haptic mechanism.
Abstract:
A configurable, force-sensitive input structure for an electronic device is disclosed. The input structure has a metal contact layer, a sense layer positioned below the metal contact layer, and a drive layer capacitively coupled to the sense layer. The input structure may also have a compliant layer positioned between and coupled to the sense layer and the drive layer, a rigid base layer positioned below the drive layer, and a set of supports positioned between the metal contact layer and the rigid base layer.
Abstract:
A configurable, force-sensitive input structure for an electronic device is disclosed. The input structure has a metal contact layer, a sense layer positioned below the metal contact layer, and a drive layer capacitively coupled to the sense layer. The input structure may also have a compliant layer positioned between and coupled to the sense layer and the drive layer, a rigid base layer positioned below the drive layer, and a set of supports positioned between the metal contact layer and the rigid base layer.
Abstract:
A portable electronic device is described. This portable electronic device includes an external housing with a cavity defined by an edge. A keyboard, having a front surface and a back surface, is disposed in the cavity with the front surface facing the external housing. Moreover, a tray is disposed over the back surface of the keyboard, and is mechanically coupled to the external housing adjacent to the edge. Furthermore, battery cells are mechanically coupled to an opposite side of the tray from the back surface of the keyboard. The tray may allow the battery cells to be removed from the portable electronic device without damaging the keyboard. In addition, the tray may increase the compression strength and/or the bending strength of the portable electronic device.
Abstract:
An interposer for electrically coupling a battery-management circuit board in a power supply and a motherboard is described. The interposer includes: a substrate having a top surface and a bottom surface; first spring connectors, disposed on the top surface, which electrically couple to the battery-management circuit board; and second spring connectors, disposed on the bottom surface and electrically coupled to the first spring connectors, which electrically couple to the motherboard. Spring connectors in a first subset of the first and second spring connectors that convey power signals have a first vertical height, and spring connectors in a second subset of the first and second spring connectors that convey monitoring signals for the power supply have a second, smaller vertical height. In this way, the first subset is activated before the second subset is activated, thereby ensuring that an electrical path for the power signals is established first.
Abstract:
Systems are provided that include electronic equipment and electronic devices. A system may include electronic equipment such as a thermostat or other equipment in a vehicle or home, vehicle navigation equipment, networking equipment, computer equipment, equipment with speakers for playing audio, and other electronic equipment. An electronic device such as a portable electronic device may be placed in the vicinity of electronic equipment by a user. In response to detecting that the electronic device is adjacent to the electronic equipment, control circuitry in the electronic device can automatically display content of the electric device such as a user control interface for the electronic device or information related to operation of the electronic equipment. The system may monitor the position of the electronic device relative to the electronic equipment and can dynamically update the displayed content based on the current device position.
Abstract:
A configurable, force-sensitive input structure for an electronic device is disclosed. The input structure has a metal contact layer, a sense layer positioned below the metal contact layer, and a drive layer capacitively coupled to the sense layer. The input structure may also have a compliant layer positioned between and coupled to the sense layer and the drive layer, a rigid base layer positioned below the drive layer, and a set of supports positioned between the metal contact layer and the rigid base layer.
Abstract:
A portable electronic device is described. This portable electronic device includes an external housing with a cavity defined by an edge. A keyboard, having a front surface and a back surface, is disposed in the cavity with the front surface facing the external housing. Moreover, a tray is disposed over the back surface of the keyboard, and is mechanically coupled to the external housing adjacent to the edge. Furthermore, battery cells are mechanically coupled to an opposite side of the tray from the back surface of the keyboard. The tray may allow the battery cells to be removed from the portable electronic device without damaging the keyboard. In addition, the tray may increase the compression strength and/or the bending strength of the portable electronic device.