Abstract:
Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, an apparatus for processing a substrate includes: a substrate support having a substrate supporting surface including an electrically insulating coating; a substrate lift mechanism including a plurality of lift pins configured to move between a first position disposed beneath the substrate supporting surface and a second position disposed above the substrate supporting surface; and a connector configured to selectively provide an electrical connection between the substrate support and the substrate lift mechanism before the plurality of lift pins reach a plane of the substrate supporting surface.
Abstract:
Methods and apparatus for processing a substrate are provided. The apparatus, for example, can include a process chamber comprising a chamber body defining a processing volume and having a view port coupled to the chamber body; a substrate support disposed within the processing volume and having a support surface to support a substrate; and an infrared temperature sensor (IRTS) disposed outside the chamber body adjacent the view port to measure a temperature of the substrate when being processed in the processing volume, the IRTS movable relative to the view port for scanning the substrate through the view port.
Abstract:
Methods and apparatus for a substrate processing chamber are provided herein. In some embodiments, a substrate processing chamber includes a chamber body having sidewalls defining an interior volume having a polygon shape; a selectively sealable elongated opening disposed in an upper portion of the chamber body for transferring one or more substrates into or out of the chamber body; a funnel disposed at a first end of the chamber body, wherein the funnel increases in size along a direction from an outer surface of the chamber body to the interior volume; and a pump port disposed at a second end of the chamber body opposite the funnel.
Abstract:
Methods and apparatus for supporting a substrate are provided herein. In some embodiments, a substrate support to support a substrate having a given diameter includes: a base ring having an inner diameter less than the given diameter, the base ring having a support surface configured to contact a first surface of the substrate and to form a seal between the support surface and the first surface of the substrate, when disposed atop the base ring; and a clamp ring having an inner diameter less than the given diameter, wherein the clamp ring includes a contact surface proximate the inner diameter configured to contact an upper surface of the substrate, when present, and wherein the clamp ring and the base ring are further configured to provide a bias force toward each other to clamp the substrate in the substrate support.
Abstract:
Methods and apparatus for substrate position calibration for substrate supports in substrate processing systems are provided herein. In some embodiments, a method for positioning a substrate on a substrate support includes: obtaining a plurality of backside pressure values corresponding to a plurality of different substrate positions on a substrate support by repeatedly placing a substrate in a position on the substrate support, and vacuum chucking the substrate to the substrate support and measuring a backside pressure; and analyzing the plurality of backside pressure values to determine a calibrated substrate position.
Abstract:
Apparatus for improving substrate temperature uniformity in a substrate processing chamber are provided herein. In some embodiments, a cover plate for a substrate processing chamber includes: an outer portion; and a raised inner portion having a thermally emissive layer, wherein a thermal emissivity of the thermally emissive layer varies across the thermally emissive layer.
Abstract:
Embodiments of an electrostatic chuck are provided herein. In some embodiments an electrostatic chuck includes an electrode, a dielectric body having a disk shape and covering the electrode, the dielectric body including a central region and a peripheral region, and the dielectric body including a lower surface having a central opening and an upper surface having a first opening in the central region and a plurality of second openings in the peripheral region, wherein the upper surface includes a plurality of protrusions and a diameter of each of the plurality of second openings is greater than 25.0 mils, and gas distribution channels that extend from the lower surface to the upper surface to define a plenum within the dielectric body.
Abstract:
Two-piece shutter disk assemblies for use in process chambers are provided herein. In some embodiments, a shutter disk assembly for use in a process chamber includes an upper disk member having a top surface and a bottom surface, wherein a central alignment recess is formed in a center of the bottom surface, and a lower carrier member having a solid base having an upper support surface, wherein the upper support surface includes a first central self-centering feature disposed in the recess formed in the center of the bottom surface and an annular outer alignment feature that protrudes upward from a top surface of the lower carrier and forms a pocket, wherein the upper disk member is disposed in the pocket.
Abstract:
Methods and apparatus for detecting a shutter disk assembly in a process chamber using a number of sensors. A first, second, and third sensor in a shutter housing for a shutter disk assembly provide indications of a status of the shutter disk assembly. The indications are used in part to determine the operational status of the shutter disk assembly along with process information from a process controller. The operational status is then used to alter a process of the process chamber when necessary.
Abstract:
Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, an apparatus for processing a substrate includes: a substrate support having a substrate supporting surface including an electrically insulating coating; a substrate lift mechanism including a plurality of lift pins configured to move between a first position disposed beneath the substrate supporting surface and a second position disposed above the substrate supporting surface; and a connector configured to selectively provide an electrical connection between the substrate support and the substrate lift mechanism before the plurality of lift pins reach a plane of the substrate supporting surface.