Abstract:
Methods, apparatuses, and systems for substrate processing for lowering contact resistance in at least contact pads of a semiconductor device are provided herein. In some embodiments, a method of substrate processing for lowering contact resistance of contact pads includes: circulating a cooling fluid in at least one channel of a pedestal; and exposing a backside of the substrate located on the pedestal to a cooling gas to cool a substrate located on the pedestal to a temperature of less than 70 degrees Celsius. In some embodiments in accordance with the present principles, the method can further include distributing a hydrogen gas or hydrogen gas combination over the substrate.
Abstract:
Methods and apparatus for physical vapor deposition are provided. The apparatus, for example, includes A PVD apparatus that includes a chamber including a chamber wall; a magnetron including a plurality of magnets configured to produce a magnetic field within the chamber; a pedestal configured to support a substrate; and a target assembly comprising a target made of gold and supported on the chamber wall via a backing plate coupled to a back surface of the target so that a front surface of the target faces the substrate, wherein a distance between a back surface formed in a recess of the backing plate and a bottom surface of the plurality of magnets is about 3.95 mm to about 4.45 mm, and wherein a distance between the front surface of the target and a front surface of the substrate is about 60.25 mm to about 60.75 mm.
Abstract:
Methods and apparatus for processing a substrate are provided. The apparatus, for example, can include a process chamber comprising a chamber body defining a processing volume and having a view port coupled to the chamber body; a substrate support disposed within the processing volume and having a support surface to support a substrate; and an infrared temperature sensor (IRTS) disposed outside the chamber body adjacent the view port to measure a temperature of the substrate when being processed in the processing volume, the IRTS movable relative to the view port for scanning the substrate through the view port.
Abstract:
Methods and apparatus for a substrate processing chamber are provided herein. In some embodiments, a substrate processing chamber includes a chamber body having sidewalls defining an interior volume having a polygon shape; a selectively sealable elongated opening disposed in an upper portion of the chamber body for transferring one or more substrates into or out of the chamber body; a funnel disposed at a first end of the chamber body, wherein the funnel increases in size along a direction from an outer surface of the chamber body to the interior volume; and a pump port disposed at a second end of the chamber body opposite the funnel.
Abstract:
Methods, apparatuses, and systems for substrate processing for lowering contact resistance in at least contact pads of a semiconductor device are provided herein. In some embodiments, a method of substrate processing for lowering contact resistance of contact pads includes: circulating a cooling fluid in at least one channel of a pedestal; and exposing a backside of the substrate located on the pedestal to a cooling gas to cool a substrate located on the pedestal to a temperature of less than 70 degrees Celsius. In some embodiments in accordance with the present principles, the method can further include distributing a hydrogen gas or hydrogen gas combination over the substrate.
Abstract:
Methods of curing polyimide to tune the coefficient of thermal expansion are provided herein. In some embodiments, a method of curing a polymer layer on a substrate, includes: (a) applying a variable frequency microwave energy to the substrate to heat the polymer layer and the substrate to a first temperature; and (b) adjusting the variable frequency microwave energy to increase a temperature of the polymer layer and the substrate to a second temperature to cure the polymer layer.
Abstract:
Apparatus for extending process kit components lifetimes are disclosed. In some embodiments, a process kit includes: a first ring having an inner wall defining an inner diameter, an outer wall defining an outer diameter, an upper surface between the inner wall and the outer wall, and an opposing lower surface between the inner wall and the outer wall, wherein a first portion of the upper surface proximate the inner wall is concave, and wherein a second portion of the upper surface extends horizontally away from the first portion; and a second ring having an upper surface and an opposing lower surface, wherein a first portion of the lower surface is configured to rest upon the second portion of the first ring, wherein a second portion of the lower surface is convex and extends into but does not touch the concave first portion of the upper surface of the first ring.
Abstract:
Methods and apparatus for processing a substrate are provided herein. For example, a method for processing a substrate can includes selectively etching from a substrate disposed in the PVD chamber an exposed first layer of material, covering an underlying second layer of material, and adjacent to an exposed third layer of material, using both process gas ions and metal ions formed from a target of the PVD chamber, in an amount sufficient to expose the second layer of material while simultaneously depositing a layer of metal onto the third layer of material; and subsequently depositing metal from the target onto the second layer of material.
Abstract:
Methods and apparatus for processing a substrate are provided herein. The apparatus can include, for example, a microwave energy source configured to provide microwave energy from beneath a substrate support provided in an inner volume of the process chamber; a first microwave reflector positioned on the substrate support above a substrate supporting position of the substrate support; and a second microwave reflector positioned on the substrate support beneath the substrate supporting position, wherein the first microwave reflector and the second microwave reflector are positioned and configured such that microwave energy passes through the second microwave reflector and some of the microwave energy is reflected from a bottom surface of the first microwave reflector back to the substrate during operation.
Abstract:
Methods and apparatus for cleaving a substrate in a semiconductor chamber. The semiconductor chamber pressure is adjusted to a process pressure, a substrate is then heated to a nucleation temperature of ions implanted in the substrate, the temperature of the substrate is then adjusted below the nucleation temperature of the ions, and the temperature is maintained until cleaving of the substrate occurs. Microwaves may be used to provide heating of the substrate for the processes. A cleaving sensor may be used for detection of successful cleaving by detecting pressure changes, acoustic emissions, changes within the substrate, and/or residual gases given off by the implanted ions when the cleaving occurs.