Abstract:
Embodiments of a process kit for substrate process chambers are provided herein. In some embodiments, a process kit for a substrate process chamber may include a ring having a body and a lip extending radially inward from the body, wherein the body has a first annular channel formed in a bottom of the body; an annular conductive shield having a lower inwardly extending ledge that terminates in an upwardly extending portion configured to interface with the first annular channel of the ring; and a conductive member electrically coupling the ring to the conductive shield when the ring is disposed on the conductive shield.
Abstract:
Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, an apparatus for processing a substrate includes: a substrate support having a substrate supporting surface including an electrically insulating coating; a substrate lift mechanism including a plurality of lift pins configured to move between a first position disposed beneath the substrate supporting surface and a second position disposed above the substrate supporting surface; and a connector configured to selectively provide an electrical connection between the substrate support and the substrate lift mechanism before the plurality of lift pins reach a plane of the substrate supporting surface.
Abstract:
Embodiments of process kits and process chambers incorporating same are provided herein. In some embodiments, a process kit includes an adapter having an adapter body and a shield portion radially inward of the adapter body; a heat transfer channel formed in the adapter body; a shadow ring coupled to the adapter such that the shield portion of the adapter extends over a portion of the shadow ring; and a ceramic insulator disposed between the shadow ring and the adapter to electrically isolate the shadow ring from the adapter.
Abstract:
Apparatus for physical vapor deposition are provided herein. In some embodiments, a shield for use in a physical vapor deposition chamber, comprises an annular one-piece body having an inner volume, a top opening and a bottom opening, wherein a bottom of the annular one-piece body includes an inner upwardly extending u-shaped portion, an annular groove formed in an inner wall of the one-piece body, and a plurality of gas distribution vents disposed along the annular feature and formed through the one-piece body, wherein the plurality of gas distribution vents are spaced apart from each other to distribute gases into the inner volume in a desired pattern.
Abstract:
Apparatus for processing substrates is disclosed herein. In some embodiments, an apparatus includes a first shield having a first end, a second end, and one or more first sidewalls disposed between the first and second ends, wherein the first end is configured to interface with a first support member of a process chamber to support the first shield in a position such that the one or more first sidewalls surround a first volume of the process chamber; and a second shield having a first end, a second end, and one or more second sidewalls disposed between the first and second ends of the second shield and about the first shield, wherein the first end of the second shield is configured to interface with a second support member of the process chamber to support the second shield such that the second shield contacts the first shield to form a seal therebetween.
Abstract:
Apparatus for extending process kit components lifetimes are disclosed. In some embodiments, a process kit includes: a first ring having an inner wall defining an inner diameter, an outer wall defining an outer diameter, an upper surface between the inner wall and the outer wall, and an opposing lower surface between the inner wall and the outer wall, wherein a first portion of the upper surface proximate the inner wall is concave, and wherein a second portion of the upper surface extends horizontally away from the first portion; and a second ring having an upper surface and an opposing lower surface, wherein a first portion of the lower surface is configured to rest upon the second portion of the first ring, wherein a second portion of the lower surface is convex and extends into but does not touch the concave first portion of the upper surface of the first ring.
Abstract:
Embodiments of target retaining apparatus and substrate processing chambers incorporating same are provided herein. In some embodiments, a target retaining apparatus includes a housing including a first slot and a second slot; a cam movably disposed in the housing, wherein movement of the cam is constrained along the first slot; a retaining arm movably coupled to the cam, wherein movement of the retaining arm is constrained along the second slot; a linking member including a first end rotatably coupled to the cam and a second end rotatably coupled to the retaining arm; and a biasing element biasing the cam towards a first position in which the retaining arm extends away from the housing.
Abstract:
Apparatus and methods for reducing and eliminating accumulation of excessive charged particles from substrate processing systems are provided herein. In some embodiments a process kit for a substrate process chamber includes: a cover ring having a body and a lip extending radially inward from the body, wherein the body has a bottom, a first wall, and a second wall, and wherein a first channel is formed between the second wall and the lip; a grounded shield having a lower inwardly extending ledge that terminates in an upwardly extending portion configured to interface with the first channel of the cover ring; and a bias power receiver coupled to the body and extending through an opening in the grounded shield.
Abstract:
Embodiments of process kit shields and process chambers incorporating same are provided herein. In some embodiments, a one-piece process kit shield includes a cylindrical body having an upper portion and a lower portion; a heat transfer channel extending through the upper portion; and a cover ring section extending radially inward from the lower portion.
Abstract:
Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, an apparatus for processing a substrate includes: a substrate support having a substrate supporting surface including an electrically insulating coating; a substrate lift mechanism including a plurality of lift pins configured to move between a first position disposed beneath the substrate supporting surface and a second position disposed above the substrate supporting surface; and a connector configured to selectively provide an electrical connection between the substrate support and the substrate lift mechanism before the plurality of lift pins reach a plane of the substrate supporting surface.