Abstract:
Embodiments of the present disclosure generally relate to chemical mechanical polishing (CMP) of substrates. In one embodiment, a carrier head for a CMP apparatus is disclosed herein. The carrier head includes a body, a retaining ring, and a sensor assembly. The retaining ring is coupled to the body. The sensor assembly is positioned at least partially in the body. The sensor assembly includes a transmitter, an antenna, and a vibrational sensor. The transmitter has a first end and a second end. The antenna is coupled to the first end of the transmitter. The vibrational sensor is coupled to the second end. The vibrational sensor is configured to detect vibration during chemical mechanical processes with respect to radial, azimuthal, and angular axes of the carrier head.
Abstract:
An apparatus includes a reactive species source, a spectral measurement volume, a light source to emit a light beam into the spectral measurement volume, a spectrometer to receive the light beam from the spectral measurement volume. The apparatus includes an a controller configured to, when a reactive species is present in the spectral measurement volume, control the light source to emit the light beam into the spectral measurement volume and the spectrometer to determine an environment spectrum using the light beam, and when the reactive species is not present in the spectral measurement volume, control the light source to emit the light beam into the spectral measurement volume and the spectrometer to determine a baseline spectrum using the light beam, calculate a net spectrum based on a difference between the environment spectrum and the baseline spectrum, and estimate a concentration of the reactive species based on the net spectrum.
Abstract:
Embodiment disclosed herein generally relate to a method for removing aluminum fluoride contamination from semiconductor processing equipment. A method for cleaning semiconductor processing equipment is disclosed herein. The method includes maintaining a container of water at a temperature of between 50 degrees Celsius and 100 degrees Celsius and soaking a semiconductor processing equipment having surface contamination comprising aluminum fluoride in the water, wherein the semiconductor processing equipment is comprised of a material having a solubility directly related to the temperature of the water.
Abstract:
Methods and apparatus for plasma processing are provided herein. For example, apparatus can include a system for plasma processing including a remote plasma source including a supply terminal configured to connect to a power source and an output configured to deliver RF power to a plasma block of the remote plasma source for creating a plasma and a controller configured to control operation of the remote plasma source based on a measured input power at the supply terminal.
Abstract:
The implementations described herein generally relate to a sensing device for use in the semiconducting industry which sense process parameters to control semiconductor processes. More specifically, the implementations relate to packaging for a surface acoustic wave (SAW) based devices or wireless or RF-responsive sensors for use in the harsh processing environments of a semiconductor processing chamber such that the neither the sensor and its components nor the chamber components interfere with or contaminate one another. The sensor packaging may include various packaging layers with or without protective coatings and a waveguide. The packaging may have a thickness chosen such that the thickness is less than the electromagnetic wavelength of a SAW sensor radio wave. The sensing devices may be disposed in cavities of the chamber, the processing volume, on chamber components, and/or on the substrate.
Abstract:
Methods and apparatus for processing a substrate are provided herein. For example, apparatus can include a system for processing a substrate, comprising: a remote plasma source including a supply terminal configured to connect to a power source and an output configured to deliver RF power to a plasma block of the remote plasma source for creating a plasma; and a controller connected to the supply terminal of the remote plasma source and configured to determine, based on a predictive model of the remote plasma source, whether a power at the supply terminal is equal to a predetermined threshold during processing of a substrate, wherein the predictive model includes a correlation of remote plasma performance with delivered RF power at the output, and to control the processing of the substrate based on a determination of the predetermined threshold being met to control processing of the substrate.
Abstract:
The implementations described herein generally relate to a sensing device for use in the semiconducting industry, which sense process parameters to control semiconductor processes. More specifically, the implementations relate to packaging for a surface acoustic wave (SAW) based devices or wireless or RF-responsive sensors for use in the harsh processing environments of a semiconductor processing chamber such that the neither the sensor and its components nor the chamber components interfere with or contaminate one another. The sensor packaging may include various packaging layers with or without protective coatings and a waveguide. The packaging may have a thickness chosen such that the thickness is less than the electromagnetic wavelength of a SAW sensor radio wave. The sensing devices may be disposed in cavities of the chamber, the processing volume, on chamber components, and/or on the substrate.
Abstract:
Examples of the disclosure generally relate to a component for use in a semiconductor process chamber includes a body having machined surfaces including a processing facing surface configured to face a processing region of the semiconductor process chamber, and a profile disposed on the plasma facing surface wherein the profile increases the surface area of the processing facing surface without increasing a base surface area.
Abstract:
Methods and apparatus reduce chucking abnormalities for electrostatic chucks by ensuring proper planarizing of ceramic surfaces of the electrostatic chuck. In some embodiments, a method for planarizing an upper ceramic surface of an electrostatic chuck assembly may comprise placing the electrostatic chuck assembly in a first planarizing apparatus, altering an upper ceramic surface of the electrostatic chuck assembly, and halting the altering of the upper ceramic surface of the electrostatic chuck assembly when an Sa parameter is less than approximately 0.1 microns, an Sdr parameter is less than approximately 2.5 percent, an Sz parameter is less than approximately 10 microns for any given area of approximately 10 mm2 of the upper ceramic surface, or a pit-porosity depth parameter of greater than 1 micron is less than approximately 0.1 percent of area of the upper ceramic surface.
Abstract:
Embodiments of the present invention provide apparatus, systems and methods for measuring dissociation of a process gas generated by a RPS. In one embodiment, a method of measuring dissociation of a process gas includes receiving a process gas from a RPS, the process gas including a polyatomic molecule that dissociates into at least one free radical. The method further includes irradiating the process gas with IR radiation at one or more wavelengths, detecting the IR radiation that passes through the process gas, and determining a degree of dissociation of the polyatomic molecule in the process gas based, at least in part, on the detected IR radiation. In one embodiment, the method further comprises modifying one or more settings of the RPS, based, at least in part, on the determined degree of dissociation.