Abstract:
Embodiment disclosed herein generally relate to a method for removing aluminum fluoride contamination from semiconductor processing equipment. A method for cleaning semiconductor processing equipment is disclosed herein. The method includes maintaining a container of water at a temperature of between 50 degrees Celsius and 100 degrees Celsius and soaking a semiconductor processing equipment having surface contamination comprising aluminum fluoride in the water, wherein the semiconductor processing equipment is comprised of a material having a solubility directly related to the temperature of the water.
Abstract:
Embodiments described herein generally relate to an apparatus and methods for reducing the deposition of polymers in a semiconductor processing chamber. A heater jacket and heat sources are provided and may be configured to maintain a uniform temperature profile of the processing chamber. A method of maintaining a uniform temperature profile of a dielectric ceiling of the processing chamber is also provided.
Abstract:
Methods for texturing a surface of a component which include partially submerging the component within a liquid such that a first portion of the component is not submerged in the liquid and a second portion of the component is submerged in the liquid; and contacting at least the first portion of the component with a laser beam at a power and for a period of time sufficient to texture the first portion of the component to a first surface roughness, wherein the second portion of the component is either not textured by the laser beam, or is textured to a lesser degree than the first portion of the component and has a second surface roughness which is less than the first surface roughness.
Abstract:
The implementations described herein generally relate to 30 nm in-line liquid particle count testing equipment which analyses and cleans semiconductor processing equipment. More specifically, the implementations described relate to a system for diluting, analyzing, and modifying fluids to enable the observation of the contents of the fluids. A dilution sampling tool is coupled with a liquid particle detector for reading the contents of an extraction solution containing particles from semiconductor processing equipment, such as a liner, a shield, a faceplate, or a showerhead, in a cleaning tank. As such, accurate liquid particle readings may be had which reduce oversaturation of the particle detector.
Abstract:
In some embodiments, a sonic cleaning system includes a tank configured to receive a liquid that enables propagation of sonic waves and a cylindrical insert located within the tank. The cylindrical insert includes a first end having a first opening and a second end opposite the first end. The second end has a second opening. The cylindrical insert is configured suspend a workpiece between the first opening and the second opening. The sonic cleaning system includes a sonic transducer located within the cylindrical insert.
Abstract:
Embodiments of the disclosure provide a chamber component for use in a plasma processing chamber apparatus. The chamber component may include a coating layer that provides a fluorine-rich surface. In one embodiment, a chamber component, for use in a plasma processing apparatus, includes a body having an outer layer comprising yttria having a coating layer formed thereon, wherein the coating layer comprises a yttrium fluoride containing material.
Abstract:
Implementations of the present disclosure provide a chamber component for use in a processing chamber. The chamber component includes a body for use in a plasma processing chamber, a barrier oxide layer formed on at least a portion of an exposed surface of the body, the barrier oxide layer having a density of about 2 gm/cm3 or greater, and an aluminum oxyfluoride layer formed on the barrier oxide layer, the aluminum oxyfluoride layer having a thickness of about 2 nm or greater.
Abstract:
Implementations described herein generally relate to substrate processing equipment and more particularly to methods and compositions for temperature control of substrate processing equipment. In one implementation, a method of cooling a processing chamber component is provided. The method comprises introducing an inert purge gas into a supply reservoir containing a coolant and flowing the treated coolant to a processing chamber component to cool the processing chamber component. The coolant initially comprises deionized water and a water-soluble base.
Abstract:
A processing chamber component and method for fabricating the same are provided. The processing chamber component is fabricated in the manner described herein and includes the creation of at least a macro texture on a surface of the chamber component. The macro texture is defined by a plurality of engineered features arranged in a predefined orientation on the surface of the chamber component. In some embodiments, the engineered features prevent formation of a line of sight surface defined between the features to enhance retention of films deposited on the chamber component.