Abstract:
A method for depositing a low dielectric constant film having a dielectric constant of about 3.0 or less, preferably about 2.5 or less, is provided by reacting a gas mixture including one or more organosilicon compounds and one or more oxidizing gases. In one aspect, the organosilicon compound comprises a hydrocarbon component having one or more unsaturated carbon-carbon bonds, and in another aspect, the gas mixture further comprises one or more aliphatic hydrocarbon compounds having one or more unsaturated carbon-carbon bonds. The low dielectric constant film is post-treated after it is deposited. In one aspect, the post treatment is an electron beam treatment, and in another aspect, the post-treatment is an annealing process.
Abstract:
A method for depositing a low dielectric constant film having an improved hardness and elastic modulus is provided. In one aspect, the method comprises depositing a low dielectric constant film having silicon, carbon, and hydrogen, and then treating the deposited film with a plasma of helium, hydrogen, or a mixture thereof at conditions sufficient to increase the hardness of the film.
Abstract:
A method of fabricating an interconnect structure comprising etching a via into an upper low K dielectric layer and into a hardened portion of a lower low K dielectric layer. The via is defined by a pattern formed in a photoresist layer. The photoresist layer is then stripped, and a trench that circumscribes the via as defined by a hard mask is etched into the upper low K dielectric layer and, simultaneously, the via that was etched into the hardened portion of the lower low K dielectric layer is further etched into the lower low K dielectric layer. The result is a low K dielectric dual damascene structure.
Abstract:
A method for depositing a low dielectric constant film having a dielectric constant of about 3.5 or less is provided by blending one or more cyclic organosilicon compounds, one or more aliphatic organosilicon compounds, and one or more low molecular weight aliphatic hydrocarbon compounds. In one aspect, a gas mixture comprising one or more cyclic organosilicon compounds, one or more aliphatic organosilicon compounds, one or more aliphatic hydrocarbon compounds, one or more oxidizing gases, and a carrier gas is reacted at conditions sufficient to deposit a low dielectric constant film on a substrate surface.
Abstract:
A method for depositing a low dielectric constant film having a dielectric constant of about 3.0 or less, preferably about 2.5 or less, is provided by using one or more cyclic organic precursors and one or more aliphatic precursors. In one aspect, a cyclic organosilicon compound, an aliphatic organosilicon, and an aliphatic hydrocarbon compound are reacted with an oxidizing gas at conditions sufficient to deposit a low dielectric constant film on the semiconductor substrate. The cyclic organosilicon compound includes at least one silicon-carbon bond. The aliphatic organosilicon compound includes a silicon-hydrogen bond or a silicon-oxygen bond.
Abstract:
A silicon oxide layer is produced by plasma enhanced decomposition of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
Abstract:
One embodiment of the present invention is a method for depositing low-k dielectric films that includes steps of: (a) CVD-depositing a low-k dielectric film; and (b) plasma treating the CVD-deposited, low-k dielectric film.
Abstract:
A method for depositing a low dielectric constant film on a substrate. The method includes depositing a low dielectric constant film comprising silicon, carbon, oxygen and hydrogen in a chemical vapor deposition chamber. The method further includes exposing the low dielectric constant film to an electron beam having an exposure dose less than about 400 nullC/cm2 at conditions sufficient to increase the hardness of the low dielectric constant film.
Abstract translation:一种在基板上沉积低介电常数膜的方法。 该方法包括在化学气相沉积室中沉积包含硅,碳,氧和氢的低介电常数膜。 该方法还包括在足以增加低介电常数膜的硬度的条件下将低介电常数膜暴露于曝光量小于约400μC/ cm 2的电子束。
Abstract:
A method for depositing a low dielectric constant film on a substrate. The method includes depositing a low dielectric constant film comprising silicon, carbon, oxygen and hydrogen on the substrate disposed in a chemical vapor deposition chamber, introducing a gas mixture comprising a hydrogen-containing gas to the chemical vapor deposition chamber, forming a plasma of the gas mixture proximate the low dielectric constant film using a radio frequency power, and applying a direct current bias to at least one of the substrate or a gas distribution plate to cure the low dielectric constant film.
Abstract:
A method is provided for processing a substrate including providing a processing gas comprising hydrogen gas and an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials.