Compositions of polyamide and PEBA for the injection of fatigue-resistant rigid parts

    公开(公告)号:US10358555B2

    公开(公告)日:2019-07-23

    申请号:US15127607

    申请日:2015-03-23

    Applicant: ARKEMA FRANCE

    Abstract: Composition including: (A) 50% to 95% of at least one semicrystalline polyamide of formula A/Z in which: A is an aliphatic repeating unit chosen from a unit obtained from the polycondensation of at least one amino acid and a unit obtained from the polycondensation of at least one lactam or a unit X.Y obtained from the polycondensation of at least one diamine, and of at least one dicarboxylic acid, and Z represents another polyamide and is included from 0 to 20%; (B) 5% to 50% of at least one semicrystalline copolyamide comprising amide units (Ba1) and including polyether units (Ba2), having a glass transition temperature (Tg) below 75° C.; (C) 0% to 20% by weight of fibres and/or fillers, (D) 0% to 20% of at least one impact modifier, (E) 0% to 5% of at least one additive, for the manufacture of a sports article.

    Fibrous material impregnated with thermoplastic polymer of optimum molecular mass and viscosity and method for the production thereof

    公开(公告)号:US12173129B2

    公开(公告)日:2024-12-24

    申请号:US17416098

    申请日:2019-12-17

    Applicant: Arkema France

    Abstract: The present invention concerns an impregnated fibrous material comprising at least one continuous-fiber fibrous material in the form of a roving or a plurality of parallel rovings and at least one thermoplastic polymer matrix, characterized in that said at least one thermoplastic polymer is an amorphous or semi-crystalline polymer having a glass transition temperature such that Tg≥40° C., especially Tg≥100° C., in particular ≥120° C., the fiber content of said impregnated fibrous material being from 45 to 65% by volume, preferably from 50 to 60% by volume, especially from 54 to 60% by volume, the number-average molecular mass Mn of said thermoplastic polymer being from 11,000 to 25,000 g/mol, the melt viscosity of said thermoplastic polymer being from 80 to 1500 Pa·s, as measured by plane-plane rheology at 1 Hz and 2% deformation, at a temperature of Tg+220° C.

Patent Agency Ranking