Abstract:
A method for forming a silicon-containing epitaxial layer is disclosed. The method may include, heating a substrate to a temperature of less than approximately 950° C. and exposing the substrate to a first silicon source comprising a hydrogenated silicon source, a second silicon source, a dopant source, and a halogen source. The method may also include depositing a silicon-containing epitaxial layer wherein the dopant concentration within the silicon-containing epitaxial layer is greater than 3×1021 atoms per cubic centimeter.
Abstract:
The present disclosure relates to a susceptor having a generally circular body having a face with a radially inward section and a radially outward section which includes a substrate supporting surface elevated relative to the radially inward section. A sidewall surrounds the substrate supporting surface which upon retention of a substrate on the radially outward section, the sidewall surrounds the substrate. The sidewall includes a plurality of humps which protrude from the top surface of the sidewall. Advantageously, the plurality of humps may aid in even thickness of deposition of material at the edge of the substrate.
Abstract:
The present disclosure relates to a susceptor having a generally circular body having a face with a radially inward section and a radially outward section which includes a substrate supporting surface elevated relative to the radially inward section. A sidewall surrounds the substrate supporting surface which upon retention of a substrate on the radially outward section, the sidewall surrounds the substrate. The sidewall includes a plurality of humps which protrude from the top surface of the sidewall. Advantageously, the plurality of humps may aid in even thickness of deposition of material at the edge of the substrate.
Abstract:
A method of operating a reactor system to provide wafer temperature gradient control is provided. The method includes operating a center temperature sensor, a middle temperature sensor, and an edge temperature sensor to sense a temperature of a center zone of a wafer on a susceptor in reaction chamber of the reactor system, to sense a temperature of a middle zone of the wafer, and to sense a temperature of an edge zone of the wafer. The temperatures of the center, middle, and edge zones of the wafer are processed with a controller to generate control signals based on a predefined temperature gradient for the wafer. First, second, and third sets of heater lamps are operated based on the temperature of the center, middle, and edge zones to heat the center, the middle, and the edge zone of the wafer. Reactor systems are also described.
Abstract:
A substrate tray, a susceptor assembly including a substrate tray, and a reactor including a substrate tray and/or susceptor assembly are disclosed. The substrate tray is configured to retain a substrate during processing and can be formed of a substantially non-reactive material. The substrate tray can be received by a susceptor, formed of another material, to form the susceptor assembly.
Abstract:
A susceptor has a circular pocket portion, an annular ledge portion, and an annular rim ledge portion. The circular pocket portion is arranged along a rotation axis and has a perforated surface. The annular ledge portion extends circumferentially about pocket portion and has ledge surface that slopes axially upward from the perforated surface. The rim portion extends circumferentially about the ledge portion and is connected to the pocket portion by the ledge portion of the susceptor. The susceptor has one or more of a tuned pocket, a contact break, a precursor vent, and a purge channel located radially outward of the perforated surface to control deposition of a film onto a substrate supported by the susceptor. Semiconductor processing systems, film deposition methods, and methods of making susceptors are also described.
Abstract:
A method for forming a silicon-containing epitaxial layer is disclosed. The method may include, heating a substrate to a temperature of less than approximately 950° C. and exposing the substrate to a first silicon source comprising a hydrogenated silicon source, a second silicon source, a dopant source, and a halogen source. The method may also include depositing a silicon-containing epitaxial layer wherein the dopant concentration within the silicon-containing epitaxial layer is greater than 3×1021 atoms per cubic centimeter.