Abstract:
A displacement measurement system comprising at least one retro reflector and a diffraction grating. Said displacement measurement system is constructed and arranged to measure a displacement by providing a first beam of radiation to the measurement system, wherein the diffraction grating is arranged to diffract the first beam of radiation a first time to form diffracted beams. The at least one retro reflector is arranged to subsequently redirect the diffracted beams to diffract a second time on the diffraction grating. The at least one retro reflector is arranged to redirect the diffraction beams to diffract at least a third time on the diffraction grating before the diffracted beams are being recombined to form a second beam. And the displacement system is provided with a sensor configured to receive the second beam and determine the displacement from an intensity of the second beam.
Abstract:
A laser focusing system (330) for use in an EUV radiation source is described, the laser focusing system comprising: •—a first curved mirror (330.1) configured to receive a laser beam from a beam delivery system (320) and generate a first reflected laser beam (316); •—a second curved mirror (330.2) configured to receive the first reflected laser beam (316) and generate a second reflected laser beam (317), wherein the laser focusing system (330) is configured to focus the second reflected laser beam (317) to a target location (340) in a vessel (350) of the EUV radiation source (360).
Abstract:
A radiation collector comprising a first collector segment comprising a plurality of grazing incidence reflector shells configured to direct radiation to converge in a first location at a distance from the radiation collector, a second collector segment comprising a plurality of grazing incidence reflector shells configured to direct radiation to converge in a second location at said distance from the radiation collector, wherein the first location and the second location are separated from one another.
Abstract:
A substrate support is configured to support a substrate. The substrate support comprises a plurality of burls protruding from a base surface of the substrate support. The burls have distal ends in a plane for supporting a lower surface of the substrate with a gap between the base surface of the substrate support and the lower surface of the substrate. The substrate support comprises a liquid supply channel for supplying a conductive liquid to the gap so as to bridge the gap between the base surface of the substrate support and the lower surface of the substrate, thereby allowing charge to pass between the substrate support and the substrate. The substrate support has a controlled electrical potential such that charge distribution at the lower surface of the substrate can be manipulated.
Abstract:
A sensor includes two shear-mode piezoelectric transducers, wherein each piezoelectric transducer has a bottom surface and a top surface, wherein the top surfaces of the piezoelectric transducers are rigidly connected to each other, and wherein the bottom surfaces of the piezoelectric transducers are configured to be attached to an object to be measured.
Abstract:
A projection system, configured to project a radiation beam onto a target, includes a rotatable frame configured to rotate about an axis defining a tangential direction and a radial direction, wherein the rotatable frame holds a lens configured to focus the radiation beam in only the tangential or radial direction; and a stationary part comprising a substantially stationary lens configured to focus the radiation beam in only the other of the tangential or radial direction.