Abstract:
A radiation collector comprising a first collector segment comprising a plurality of grazing incidence reflector shells configured to direct radiation to converge in a first location at a distance from the radiation collector, a second collector segment comprising a plurality of grazing incidence reflector shells configured to direct radiation to converge in a second location at said distance from the radiation collector, wherein the first location and the second location are separated from one another.
Abstract:
An injector arrangement for providing an electron beam. The injector arrangement comprises a first injector for providing electron bunches, and a second injector for providing electrons bunches. The injector arrangement is operable in a first mode in which the electron beam comprises electron bunches provided by the first injector only and a second mode in which the electron beam comprises electron bunches provided by the second injector only.
Abstract:
A radioisotope production apparatus (RI) comprising an electron source arranged to provide an electron beam (E). The electron source comprises an electron injector (10) and an electron accelerator (20). The radioisotope production apparatus (RI) further comprises a target support structure configured to hold a target (30) and a beam splitter (40) arranged to direct the a first portion of the electron beam along a first path towards a first side of the target (30) and to direct a second portion of the electron beam along a second path towards a second side of the target (30).
Abstract:
An apparatus comprising: a radiation receiving apparatus provided with an opening operable to receive radiation from a radiation source through the opening; wherein the radiation receiving apparatus comprises a deflection apparatus arranged to change a trajectory of a particle through the opening arriving at the radiation receiving apparatus.
Abstract:
A radioisotope production apparatus comprising an electron source arranged to provide an electron beam. The electron source comprises an electron injector and an electron accelerator. The radioisotope production apparatus further comprises a target support structure configured to hold a target and a beam splitter arranged to direct the a first portion of the electron beam along a first path towards a first side of the target and to direct a second portion of the electron beam along a second path towards a second side of the target.
Abstract:
A method of patterning lithographic substrates, the method comprising using a free electron laser to generate EUV radiation and delivering the EUV radiation to a lithographic apparatus which projects the EUV radiation onto lithographic substrates, wherein the method further comprises reducing fluctuations in the power of EUV radiation delivered to the lithographic substrates by using a feedback-based control loop to monitor the free electron laser and adjust operation of the free electron laser accordingly.
Abstract:
A radiation alteration device includes a continuously undulating reflective surface, wherein the shape of the continuously undulating reflective surface follows a substantially periodic pattern.
Abstract:
A delivery system for use within a lithographic system. The beam delivery system comprises optical elements arranged to receive a radiation beam from a radiation source and to reflect portions of radiation along one or more directions to form a one or more branch radiation beams for provision to one or more tools.
Abstract:
A method of patterning lithographic substrates that includes using a free electron laser to generate EUV radiation and delivering the EUV radiation to a lithographic apparatus which projects the EUV radiation onto lithographic substrates. The method further includes reducing fluctuations in the power of EUV radiation delivered to the lithographic substrates by using a feedback-based control loop to monitor the free electron laser and adjust operation of the free electron laser accordingly, and applying variable attenuation to EUV radiation that has been output by the free electron laser in order to further control the power of EUV radiation delivered to the lithographic apparatus.