摘要:
A method and apparatus for operating geography-altering machinery such as a track-type tractor, road grader, paver or the like relative to a work site to alter the geography of the site toward a desired condition. A first digital three-dimensional model of the desired site geography, and a second digital three-dimensional model of the actual site geography are stored in a digital data storage facility. The machine is equipped with a position receiver to determine in three-dimensional space the location of the machine relative to the site. A dynamic database receives the machine position information, determines the difference between the first and second site models and generates representational signals of that difference for directing the operation of the machine to bring the actual site geography into conformity with the desired site geography. In one embodiment, the signals representing the machine position and the difference between the first and second site models used to generate an operator display which is updated in real time. Alternately, the signals representing the difference between the first and second site models can be supplied to automatic machine controls for autonomous or semi-autonomous operation of the machine.
摘要:
A method and apparatus for monitoring in real time the removal of material from a land site such as a mine by a mobile machine. A digitized three-dimensional model of the site is stored in a digital data storage and retrieval facility. The site model includes a model of the material to be removed subdivided into regions of differentiating characteristics, for example ore grade or type. The machine is provided with means for generating digital signals representing in real time the instantaneous position in three-dimensional space of at least a portion of the machine as it traverses the site. Loading signals are generated corresponding to the removal of material from the site by the machine, and an instantaneous loading position for the mobile machine relative to the site is recorded in response to the loading signal. The invention preferably includes a payload measurement system which measures each discrete load of material removed. The characteristics of the site material at the recorded loading position are correlated to the material removed from the site. In a preferred form a dynamic site database is used to update the site as material is removed and direct the machinery in altering the site to a desired state.
摘要:
A method and apparatus for operating geography-altering machinery such as a track-type tractor, road grader, paver or the like relative to a work site to alter the geography of the site toward a desired condition. A first digital three-dimensional model of the desired site geography, and a second digital three-dimensional model of the actual site geography are stored in a digital data storage facility. The machine is equipped with a position receiver to determine in three-dimensional space the location of the machine relative to the site. A dynamic database receives the machine position information, determines the difference between the first and second site models and generates representational signals of that difference for directing the operation of the machine to bring the actual site geography into conformity with the desired site geography. In one embodiment, the signals representing the machine position and the difference between the first and second site models used to generate an operator display which is updated in real time. Alternately, the signals representing the difference between the first and second site models can be supplied to automatic machine controls for autonomous or semi-autonomous operation of the machine.
摘要:
A system and method for controlling an autonomously navigated vehicle uses a vehicle manager to control vehicle subsystems and to respond to commands from either a vehicle navigation system or a remote control panel. The vehicle manager controls vehicle subsystems including a speed control subsystem, a steering control subsystem, an auxiliary control subsystem, and a monitor subsystem. The speed control subsystem controls the speed of the vehicle in response to a speed command from the vehicle manager. The steering control subsystem controls the steering angle of the vehicle in response to a steering command from the vehicle manager. The auxiliary control subsystem controls auxiliary functions of the vehicle in response to an auxiliary command from the vehicle manager. The monitor subsystem monitors the status of each of the other subsystems and provides the status to the vehicle manager.
摘要:
A system for generating a path allows a vehicle to traverse a predetermined route. The system stores route data for the predetermined route. The route data identifies a series of contiguous path segments that form the predetermined route. The route data also identifies a series of nodes located at the beginning and the end of the predetermined route and between adjacent path segments. Each path segment represents a series of postures along the predetermined route. Each posture identifies a position, a heading, and a curvature for the vehicle at a particular point along the predetermined route. The system stores the path segments and nodes as compressed path data. In one embodiment, the compressed path data is a function that is continuous in posture, i.e., continuous in position, heading and curvature. The system retrieves the compressed path data and generates a series of postures from the retrieved compressed path data to allow the vehicle to traverse the predetermined route.
摘要:
An apparatus and method for navigating a vehicle along a predetermined route use route data and path data to define the predetermined route. The route data represents one or more contiguous path segments between adjacent nodes along the predetermined route. The path data includes postures of the vehicle along each of the path segments. The postures define the desired position, heading, curvature and speed of vehicle at various locations along the path segments. The apparatus and method use the posture information to generate and track a path thereby allowing the vehicle to navigate along the predetermined route.
摘要:
A system (400) for positioning and navigating an autonomous vehicle (310) allows the vehicle (310) to travel between locations. Position information (432) is derived from global positioning system satellites (200, 202, 204, and 206) or other sources (624) when the satellites (200, 202, 204, and 206) are not in the view of the vehicle (310). Navigation of the vehicle (310) is obtained using the position information (432), route information (414), obstacle detection and avoidance data (416), and on board vehicle data (908 and 910).
摘要:
A system and method for controlling the navigation of surface based vehicle uses a route that is obtained by manually driving the vehicle over the route to collect data defining the absolute position of the vehicle at various positions along the route. The collected data is smoothed to provide a consistent route to be followed. The smoothed data is subsequently used to automatically guide the vehicle over the route.
摘要:
An apparatus and method for controlling a surface-based vehicle provides three operational modes: a manual operation, a tele-operation, and an autonomous operation. In manual operation, an operator directly manipulates vehicle controls on the vehicle. In tele-operation, the operator controls the vehicle from a remote position. In autonomous operation, the vehicle controls itself based on its position and a predetermined path. The apparatus and method of the present invention provides an orderly transition between manual operation, tele-operation, and autonomous operation of the vehicle.
摘要:
A system (400) for positioning and navigating an autonomous vehicle (310) allows the vehicle (310) to travel between locations. Position information (432) is derived from global positioning system satellites (200, 202, 204, and 206) or other sources (624) when the satellites (200, 202, 204, and 206) are not in the view of the vehicle (310). Navigation of the vehicle (310) is obtained using the position information (432), route information (414), obstacle detection and avoidance data (416), and on board vehicle data (908 and 910).