摘要:
A solid-state battery and a method of making the same are disclosed. The battery includes a base frame or support, first and second exterior contacts on the base frame/support, stacked solid-state battery unit cells, first and second electrical connections, and encapsulation in contact with the base frame/support and covering the solid-state battery unit cells and the electrical connections. Each stacked solid-state battery unit cell is on a metal substrate and has exposed cathode and anode current collectors. The electrical connections respectively electrically connect the exposed cathode and anode current collectors to the first and second exterior contacts. The method includes forming the stacked solid-state battery unit cells on the base frame/support, forming the exterior contacts on the base frame/support, electrically connecting the exposed cathode and anode current collectors to the respective exterior contacts, and encapsulating the solid-state battery unit cells and the electrical connections.
摘要:
The present disclosure pertains to a battery and a method of making the same. The battery includes first and second metal substrates, a first solid-state and/or thin-film battery cell on the first metal substrate, a second solid-state and/or thin-film battery cell on the second metal substrate, and a hermetic seal in a peripheral region of the first and second metal substrates. The first and second battery cells are between the first and second metal substrates, and face each other. The method includes respectively forming first and second solid-state and/or thin-film battery cells on first and second metal substrates, placing the second battery cell on the first battery cell so that the first and second battery cells are between the first and second metal substrates, and hermetically sealing the first and second battery cells in a peripheral region of the first and second metal substrates.
摘要:
The present disclosure pertains to a battery and a method of making the same. The battery includes first and second metal substrates, a first solid-state and/or thin-film battery cell on the first metal substrate, a second solid-state and/or thin-film battery cell on the second metal substrate, and a hermetic seal in a peripheral region of the first and second metal substrates. The first and second battery cells are between the first and second metal substrates, and face each other. The method includes respectively forming first and second solid-state and/or thin-film battery cells on first and second metal substrates, placing the second battery cell on the first battery cell so that the first and second battery cells are between the first and second metal substrates, and hermetically sealing the first and second battery cells in a peripheral region of the first and second metal substrates.
摘要:
Embodiments of the disclosure pertain to a multi-layer barrier for a flexible substrate supporting electronic and/or microelectromechanical system (MEMS) devices. Apparatuses including a substrate, a first metal nitride layer, a first oxide layer on or over the first metal nitride layer, a second metal nitride layer and a second oxide layer on or over the first oxide layer, and a device layer on or over the first oxide layer or both the first and second oxide layers are disclosed. When the device layer is on or over the first oxide layer, the second metal nitride layer is on or over the device layer, and the second oxide layer is on or over the on or over the second metal nitride layer. When the device layer is on or over both the first and second oxide layers, the second metal nitride layer is on or over the second oxide layer. A method of making the same is also disclosed.
摘要:
A method of attaching one or more active devices on one or more substrates to a metal carrier by “hot stamping” is disclosed. The method includes contacting the active device(s) on the substrate(s) with the metal carrier, and applying pressure to and heating the active device(s) on the substrate(s) and the metal carrier sufficiently to affix or attach the active device(s) on the substrate(s) to the metal carrier. The active device(s) may include an integrated circuit. The substrate(s) may include a metal substrate on the backside of the active device and a protective/carrier film on the frontside of the active device. The protective/carrier film may be or include an organic polymer. The metal carrier may be or include a metal foil. Various examples of the method further include thinning the metal substrate, dicing the active device(s) and a continuous substrate, and/or separating the active devices.
摘要:
A wireless communication device having an integrated antenna, and methods for making and using the same are disclosed. The device generally includes (a) a substrate; (b) an integrated circuit (IC) comprising a plurality of printed and/or thin film layers and/or structures on the substrate, (c) a dielectric or insulator layer in at least one area of the substrate other than the IC; and (d) an antenna on the dielectric or insulator layer, comprising one or more metal traces. The plurality of printed and/or thin film layers and/or structures include an uppermost layer of metal. The antenna has (i) an inner terminal continuous with the uppermost layer of metal or connected to the uppermost layer of metal through one or more contacts, and (ii) an outer terminal connected to the uppermost layer of metal through one or more contacts and optionally a metal bridge or strap
摘要:
A method of making a MOS device, a MOS device containing an aluminum nitride layer, and a CMOS circuit are disclosed. The method includes depositing an aluminum nitride layer on a structure including a silicon layer, depositing a dopant ink on the structure, and diffusing the dopant through the aluminum nitride layer into the silicon layer. The structure also includes a gate oxide layer on the silicon layer and a gate on the gate oxide layer. The dopant ink includes a dopant and a solvent. The MOS device includes a silicon layer, a gate oxide layer on the silicon layer, a gate on the gate oxide layer, and an aluminum nitride layer on the gate. The silicon layer includes a dopant on opposite sides of the gate.
摘要:
A wireless communication device and methods of manufacturing and using the same are disclosed. The wireless communication device includes a substrate with an antenna and/or inductor thereon, a patterned ferrite layer overlapping the antenna and/or inductor, and a capacitor electrically connected to the antenna and/or inductor. The wireless communication device may further include an integrated circuit including a receiver configured to convert a first wireless signal to an electric signal and a transmitter configured to generate a second wireless signal, the antenna being configured to receive the first wireless signal and transmit or broadcast the second wireless signal. The patterned ferrite layer advantageously mitigates the deleterious effect of metal objects in proximity to a reader and/or transponder magnetically coupled to the antenna.
摘要:
The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature. Uniform etching allows for an efficient method of reducing a critical dimension of an electrically active structure by simple isotropic etch.
摘要:
A wireless communication device and methods of manufacturing and using the same are disclosed. The wireless communication device includes a substrate with an antenna and/or inductor thereon, a patterned ferrite layer overlapping the antenna and/or inductor, and a capacitor electrically connected to the antenna and/or inductor. The wireless communication device may further include an integrated circuit including a receiver configured to convert a first wireless signal to an electric signal and a transmitter configured to generate a second wireless signal, the antenna being configured to receive the first wireless signal and transmit or broadcast the second wireless signal. The patterned ferrite layer advantageously mitigates the deleterious effect of metal objects in proximity to a reader and/or transponder magnetically coupled to the antenna.