摘要:
A contact structure is formed with no voids in an interlayer insulation film and good surface planarity. A first insulation film (21) formed of p-TEOS is deposited to cover a substrate (1) and wires (4) formed on the substrate (1). A second insulation film (22) which is coating glass is formed by SOG. The surface is etched back from the opposite side to the substrate (1); therefore, the second insulation film (22) is etched. The etching is stopped at the point where the surface (21a) of the first insulation film (21) on the wires (4) is exposed. This ensures good surface,planarity. A third insulation film (23) is stacked on top of the second insulation film (22), and portions of the third insulation film (23) above the wires (4) are isotropically etched to form openings (51). At this time, the isotropic etching does not extend over the second insulation film (22).
摘要:
In a semiconductor device, an active region is formed in a semiconductor substrate separated by a plurality of isolation regions. A plurality of surface insulating films of different thickness are formed separately on the active region. A plurality of conductive films are formed on the respective insulating films. Then, one of the surface insulating film having smaller thickness is caused to break down to work as an electric fuse.
摘要:
Provided is a method of manufacturing a semiconductor device having a capacitor above a semiconductor substrate, with which it is possible to reduce the number of steps and the cost of manufacture. Specifically, a polysilicon layer (12) in which impurity is diffused is deposited on the entire surface including the inside of a hole (8A). An etching process of the polysilicon layer (12) is performed to form a storage node electrode composed of the polysilicon layer (12) remaining on the bottom and side of a groove for metallization (15) and in the hole (8A). The storage node electrode is broadly divided into a storage node electrode body disposed on the bottom and side of the groove for metallization (15), and a plug part disposed in the hole (8A). The storage node electrode is electrically connected via the plug part to a diffused region (19) of a semiconductor substrate (1).
摘要:
A semiconductor device having a test mark comprising: a semiconductor substrate; a first TEOS layer formed on the semiconductor substrate; a second TEOS layer formed on the first TEOS layer and having a fluidity lower than that of the first TEOS layer at an elevated temperature; a recess formed in the first and second TEOS layers and exposing the surface of the semiconductor substrate, wherein the horizontal cross section of the recess is substantially rectangular in configuration; and a metal layer formed between the first and second TEOS layers and opposing to the corner of the recess.
摘要:
There is described a semiconductor device having a storage node capacitor structure suitable for rendering memory cells compact, and storage nodes are prevented from tilting. The device includes a storage node which has a vertical surface extending in the direction perpendicular to the surface of a semiconductor substrate, and a dielectric film for tilt prevention purposes which is brought into close contact with the side surface of the vertical surface and which prevents the vertical surface from tilting.
摘要:
There is described the manufacture of a semiconductor device having a storage node or high-yield manufacture of a compact memory IC. The present invention provides a method of manufacturing a semiconductor device including a basic dielectric layer formation step for forming a basic dielectric layer from a first dielectric material, a stopper film formation step for forming on the basic dielectric layer an etch stopper film from a second dielectric material differing from the first dielectric film, a sacrificial dielectric layer formation step for forming on the etch stopper film a sacrificial dielectric layer from the first dielectric material, a space formation step for forming a storage node formation space by removal of a predetermined area from the sacrificial dielectric layer until the etch stopper film becomes exposed, a storage node formation step for forming in the storage node formation space a storage node from a capacitive material, and a sacrificial dielectric layer removal step for removing the sacrificial dielectric layer surrounding the storage node by means of an etching operation suitable for removal of the first dielectric material.
摘要:
There is provided a semiconductor device adopting, as a layout of pads connected to an external package on an LSI, a zigzag pad layout in which the pads are arranged shifted alternately, which can avoid occurrences of short-circuiting of wires, an increase in chip size due to avoidance of short-circuiting, propagation of power supply or GND noise due to reduction in IO cell interval, and signal transmission delay difference due to displacement of pad positions. In a semiconductor device wherein plural pads on a semiconductor element which are connected to function terminals on an external package are arranged in two lines along the periphery of the semiconductor element, an arrangement order of the plural pads on the semiconductor element is different from an arrangement order of the function terminals on the external package.
摘要:
A semiconductor device may include, but is not limited to, a semiconductor substrate having a device isolation groove defining first to fourth device formation portions. The second device formation portion is separated from the first device formation portion. The third device formation portion extends from the first device formation portion. The third device formation portion is separated from the second device formation portion. The fourth device formation portion extends from the second device formation portion. The fourth device formation portion is separated from the first and third device formation portions. The third and fourth device formation portions are positioned between the first and second device formation portions.
摘要:
A data processor according to the present invention executes instructions described in first and second instruction formats. The first instruction format defines a register-addressing field of a predetermined size, while the second instruction format defines a register-addressing field of a size larger than that of the register-addressing field defined by the first instruction format. The data processor includes: instruction-type identifier, responsive to an instruction, for identifying the received instruction as being described in the first or second instruction format by the instruction itself; a first register file including a plurality of registers; and a second register file also including a plurality of registers, the number of the registers included in the second register file being larger than that of the registers included in the first register file. If the instruction-type identifier has identified the received instruction as being described in the first instruction format, the data processor executes the instruction using data held in the first register file. On the other hand, if the instruction-type identifier has identified the received instruction as being described in the second instruction format, the data processor executes the instruction using data held in the second register file.
摘要:
On a silicon oxide film including the interior of an opening a semispherical RGP film is deposited. At a temperature lower than that allowing a crystal of silicon to be grown a BPTEOS film is deposited to fill the opening. Then a portion other than the semispherical RGP film introduced in the opening is chemically mechanically polished and thus removed. This contributes to reduced crystal growth of silicon at the semispherical RGP film and hence reduced scattering and/or removal of the RGP film for example when a CMP step is performed. Subsequently the semispherical RGP film is annealed to grow a crystal of silicon to form a generally spherical RGP film. Thus a storage node can have an increased surface area and a capacitor can have increased capacity.