摘要:
Column redundancy data is selectively retrieved in a memory device according to a set of storage elements which is currently being accessed, such as in a read or write operation. The memory device is organized into sets of storage elements such as logical blocks, where column redundancy data is loaded from a non-volatile storage location to a volatile storage location for one or more particular blocks which are being accessed. The volatile storage location need only be large enough to store the current data entries. The size of the set of storage elements for which column redundancy data is concurrently loaded can be configured based on an expected maximum number of defects and a desired repair probability. During a manufacturing lifecycle, the size of the set can be increased as the number of defects is reduced due to improvements in manufacturing processes and materials.
摘要:
Column redundancy data is selectively retrieved in a memory device according to a set of storage elements which is currently being accessed, such as in a read or write operation. The memory device is organized into sets of storage elements such as logical blocks, where column redundancy data is loaded from a non-volatile storage location to a volatile storage location for one or more particular blocks which are being accessed. The volatile storage location need only be large enough to store the current data entries. The size of the set of storage elements for which column redundancy data is concurrently loaded can be configured based on an expected maximum number of defects and a desired repair probability. During a manufacturing lifecycle, the size of the set can be increased as the number of defects is reduced due to improvements in manufacturing processes and materials.
摘要:
A technique for identifying bad pages of storage elements in a memory device. A flag byte is provided for each page group of one or more pages which indicates whether the page group is healthy. Flag bytes of selected page groups also indicate whether larger sets of page groups are healthy, according to bit positions in the flag bytes. A bad page identification process includes reading the flag bytes with a selected granularity so that not all flag bytes are read. Optionally, a drill down process reads flag bytes for smaller sets of page groups when a larger set of page groups is identified as having at least one bad page. This allows the bad page groups to be identified and marked with greater specificity. Redundant copies of flag bytes may be stored in different locations of the memory device. A majority vote process assigns a value to each bit.
摘要:
A technique for identifying bad pages of storage elements in a memory device. A flag byte is provided for each page group of one or more pages which indicates whether the page group is healthy. Flag bytes of selected page groups also indicate whether larger sets of page groups are healthy, according to bit positions in the flag bytes. A bad page identification process includes reading the flag bytes with a selected granularity so that not all flag bytes are read. Optionally, a drill down process reads flag bytes for smaller sets of page groups when a larger set of page groups is identified as having at least one bad page. This allows the bad page groups to be identified and marked with greater specificity. Redundant copies of flag bytes may be stored in different locations of the memory device. A majority vote process assigns a value to each bit.
摘要:
In some embodiments, a memory array is provided that includes (1) a first memory cell having (a) a first conductive line; (b) a first bipolar storage element formed above the first conductive line; and (c) a second conductive line formed above the first bipolar storage element; and (2) a second memory cell formed above the first memory cell and having (a) a second bipolar storage element formed above the second conductive line; and (b) a third conductive line formed above the second bipolar storage element. The first and second memory cells share the second conductive line; the first bipolar storage element has a first storage element polarity orientation within the first memory cell; the second bipolar storage element has a second storage element polarity orientation within the second memory cell; and the second storage element polarity orientation is opposite the first storage element polarity orientation. Numerous other aspects are provided.
摘要:
A storage system includes a three-dimensional memory array that has multiple layers of non-volatile storage elements grouped into blocks. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines (e.g. bit lines) of a first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines that are connected to control circuitry. To increase the performance of memory operations, the second selection circuits can change their selections independently of each other.
摘要:
A storage system includes a three-dimensional memory array that has multiple layers of non-volatile storage elements grouped into blocks. The blocks are grouped into bays. The storage system includes array lines of a first type in communication with storage elements, array lines of a second type in communication with storage elements, and sense amplifiers. Each block is geographically associated with two sense amplifiers and all blocks of a particular bay share a group of sense amplifiers associated with the blocks of the particular bay. The system includes multiple sets of local data lines in one or more routing metal layers below the three-dimensional memory array and multiple sets of global data lines in one or more top metal layers above the three-dimensional memory array. Each set of one or more blocks include one set of the local data lines. Each bay includes one set of global data lines that connect to the group of sense amplifiers associated with the blocks of the respective bay. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines of the first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines associated with a respective bay.
摘要:
A storage system includes a three-dimensional memory array that has multiple layers of non-volatile storage elements grouped into blocks. Each block includes a subset of first selection circuits for selectively coupling a subset of array lines (e.g. bit lines) of a first type to respective local data lines. Each block includes a subset of second selection circuits for selectively coupling a subset of the respective local data lines to global data lines that are connected to control circuitry. To increase the performance of memory operations, the second selection circuits can change their selections independently of each other.
摘要:
A non-volatile storage system includes technology for skipping programming cycles while programming a page (or other unit) of data. While programming a current subset of the page (or other unit) of data, the system will evaluate whether the next subsets of the page (or other unit) of data should be programmed into non-volatile storage elements or skipped. Subsets of the page (or other unit) of data that should not be skipped are programmed into non-volatile storage elements. Some embodiments include transferring the appropriate data to temporary latches/registers, in preparation for programming, concurrently with the evaluation of whether to program or skip the programming.
摘要:
A non-volatile memory core comprises one or more memory bays. Each memory bay comprises one or more memory blocks that include a grouping of non-volatile storage elements. In one embodiment, memory blocks in a particular memory bay share a group of read/write circuits. During a memory operation, memory blocks are transitioned into active and inactive states. The process of transitioning blocks from an inactive state to an active state includes enabling charge sharing between a memory block entering the active state and another memory block that was previously in the active state. This charge sharing improves performance and/or reduces energy consumption for the memory system.