摘要:
A multiple access Proximity Communication system in which electrical elements on an integrated circuit chip provide the multiplexing of multiple signals to a single electrical receiving element on another chip. Multiple pads formed on one chip and receiving separate signals may be capacitively coupled to one large pad on the other chip. Multiple inductive coils on one chip may be magnetically coupled to one large coil on another chip or inductive coils on three or more chips may be used for either transmitting or receiving. The multiplexing may be based on time, frequency, or code.
摘要:
A diversity proximity communication system formed on two juxtaposed chips, one having a two-dimensional array of transmit elements, the other having a two-dimensional array of receive elements. The receive and transmit elements need not be aligned and may have nominal alignment of one transmit element overlapping the corners of four receive elements. The elements may be electrical pads capacitively coupled across the interface. Signals of four different multiplexing groups, e.g., time-multiplexed, are supplied to transmitting elements in a 2×2 array. Signals from four receive elements in a 2×2 array are amplified, combined, and demultiplexed for the selected multiplexing group. The gains for the four signals to be combined are differentially controlled to increase the signal-to-noise ratio. The amplification may be determined by the overlap between each of the receive elements and the transmit element of the selected multiplexing group.
摘要:
A multiple access Proximity Communication system in which electrical elements on an integrated circuit chip provide the multiplexing of multiple signals to a single electrical receiving element on another chip. Multiple pads formed on one chip and receiving separate signals may be capacitively coupled to one large pad on the other chip. Multiple inductive coils on one chip may be magnetically coupled to one large coil on another chip or inductive coils on three or more chips may be used for either transmitting or receiving. The multiplexing may be based on time, frequency, or code.
摘要:
A diversity proximity communication system formed on two juxtaposed chips, one having a two-dimensional array of transmit elements, the other having a two-dimensional array of receive elements. The receive and transmit elements need not be aligned and may have nominal alignment of one transmit element overlapping the corners of four receive elements. The elements may be electrical pads capacitively coupled across the interface. Signals of four different multiplexing groups, e.g., time-multiplexed, are supplied to transmitting elements in a 2×2 array. Signals from four receive elements in a 2×2 array are amplified, combined, and demultiplexed for the selected multiplexing group. The gains for the four signals to be combined are differentially controlled to increase the signal-to-noise ratio. The amplification may be determined by the overlap between each of the receive elements and the transmit element of the selected multiplexing group.
摘要:
An electrical circuit for determining a capacitance is described. The electrical circuit includes a first device, a rectifying circuit and a feedback circuit. The first device has a first terminal and a second terminal. The first device has a first unknown capacitance and the first terminal may be configured to receive a time-varying voltage signal. The rectifying circuit has an input terminal, an output terminal and a feedback terminal. The input terminal may be coupled to the second terminal and the output terminal may be configured for coupling to an output electrical circuit. The feedback circuit may selectively couple the output terminal to the input terminal using the feedback terminal such that the output terminal and the input terminal are substantially at a common voltage.
摘要:
One embodiment of the present invention provides a system that facilitates reducing the power needed for proximity communication. This system includes an integrated circuit with an array of transmission pads that transmit a signal using proximity communication. A layer of fill metal is located in proximity to this array of transmission pads, wherein the layer of fill metal is “floating” (e.g., not connected to any signal). Leaving this layer of fill metal floating reduces the parasitic capacitance for the array of transmission pads, which can reduce the amount of power needed to transmit the signal.
摘要:
A system of protecting a proximity communication system against electrostatic discharge (ESD). The proximity communication system includes two chips, each having an array of electrical pads at its surface and covered by a thin dielectric layer such that capacitive coupling circuits are formed between the chips when they are joined together. In at least one of the chips, an additional protection pad is formed away from the array, and heavy protection circuitry is connected to it. Its surface is exposed through the dielectric surface over it such that, when an ESD aggressor approaches, the discharge occurs to the protection pad.
摘要:
One embodiment of the present invention provides a system that facilitates reducing the power needed for proximity communication. This system includes an integrated circuit with an array of transmission pads that transmit signals using proximity communication. This array is comprised of a set of macropads, where each given macropad is comprised of a set of micropads that can be configured to transmit a signal. A steering fabric routes signals to and within macropads, such that a subset of the micropads in the array can be configured to transmit the signal to a receiving component. Each macropad receives a limited number of input signals, with the steering fabric routing input signals to the micropads of the macropads. By limiting the number of input signals that are routed to the micropads of the macropads, the steering fabric eliminates redundant steering configurations for the array and reduces the power needed to transmit the signal.
摘要:
A semiconductor die is described. This semiconductor die includes an electro-static discharge (ESD) device with a metal component coupled to an input-output (I/O) pad, and coupled to a ground voltage via a signal line. Moreover, adjacent edges of the metal component and the I/O pad are separated by a spacing that defines an ESD gap. When a field-emission or ionization current flows across the ESD gap, the metal component provides a discharge path to the ground voltage for transient ESD signals. Furthermore, the ESD gap is at least partially enclosed so that there is gas in the ESD gap.
摘要:
A capacitively and conductively coupled multiplexer (C3mux) circuit is described. This C3mux circuit includes a set of nonlinear coupling capacitors, such as metal-oxide-semiconductor (MOS) transistors, that can multiplex multiple input signals while minimizing the parasitic capacitance penalty associated with the ‘off’ paths. In particular, the capacitance of a given MOS transistor depends on whether its channel is present or absent. Furthermore, this channel is formed based on whether the gate-to-source and drain voltages for the MOS transistor are greater than the MOS transistor's threshold voltage. Note that the capacitance of the MOS transistors in the C3mux circuit is low for the unselected inputs. Consequently, the parasitic loading and the delay increase slowly as a function of the number of inputs. Moreover, the conductive feedback can be used to maintain a DC level of the input signals.