摘要:
A method is disclosed for the definition of the poly-1 layer in a semiconductor wafer. A non-critical mask is used to recess field oxides in the periphery prior to poly-1 deposition by an amount equal to the final poly-1 thickness. A complimentary non-critical mask is used to permit CMP of the core to expose the tops of core oxide mesas from the shallow isolation trenches.
摘要:
A method is disclosed for the definition of the poly-1 layer in a semiconductor wafer. A non-critical mask is used to recess field oxides in the periphery prior to poly-1 deposition by an amount equal to the final poly-1 thickness. A complimentary non-critical mask is used to permit CMP of the core to expose the tops of core oxide mesas from the shallow isolation trenches.
摘要:
The present invention discloses a memory device having an improved periphery isolation region and core isolation region. A first trench is formed in a core region. Substrate material bordering the first trench is then oxidized to form a first liner. The first liner is then removed. A second trench is then formed in a periphery region. A second oxidation is then performed such that a second liner is formed from the substrate material bordering the first and second trenches. A dielectric trench fill having substantially uniform density is then deposited in the first and second trenches.
摘要:
A method for performing shallow trench isolation during semiconductor fabrication that improves trench corner rounding is disclosed. The method includes etching trenches into a silicon substrate between active regions, and performing a double liner oxidation process on the trenches. The method further includes performing a double sacrificial oxidation process on the active regions, wherein corners of the trenches are substantially rounded by the four oxidation processes.
摘要:
A method for forming a semiconductor device that includes a line and space pattern with variable pitch and critical dimensions in a layer on a substrate. The substrate includes a first region (e.g., a core region) and a second region (e.g., a periphery region). A first sub-line and space pattern in the first region comprises a space of a dimension (A) less than achievable by lithographic processes alone. Further, a second sub-line and space pattern in the second region comprises at least one line including a second critical dimension (B) achievable by lithography. The method uses two critical masking steps to form a hard mask that includes in the core region a critical dimension (A) less than achievable at a resolution limit of lithography. Further, the method uses a single etch step to transfer the pattern of the hard mask to the layer.
摘要:
A method for forming a semiconductor device that includes a line and space pattern with variable pitch and critical dimensions in a layer on a substrate. The substrate includes a first region (e.g., a core region) and a second region (e.g., a periphery region). A first sub-line and space pattern in the first region comprises a space of a dimension (A) less than achievable by lithographic processes alone. Further, a second sub-line and space pattern in the second region comprises at least one line including a second critical dimension (B) achievable by lithography. The method uses two critical masking steps to form a hard mask that includes in the core region a critical dimension (A) less than achievable at a resolution limit of lithography. Further, the method uses a single etch step to transfer the pattern of the hard mask to the layer.
摘要:
A method of forming a contact in a flash memory device utilizes a local interconnect process technique. The local interconnect process technique allows the contact to butt against or overlap a stacked gate associated with the memory cell. The contact can include tungsten. The stacked gate is covered by a barrier layer which also covers the insulative spacers.
摘要:
A method of forming a contact in a flash memory device utilizes a local interconnect process technique. The local interconnect process technique allows the contact to butt against or overlap a stacked gate associated with the memory cell. The contact can include tungsten. The stacked gate is covered by a barrier layer which also covers the insulative spacers.
摘要:
A wet etching process for establishing isolation grooves in a flash memory core wafer includes depositing nitride and/or oxide layers on a silicon substrate of the wafer, depositing a photoresist layer thereon, and then exposing predetermined portions of the photoresist layer to ultraviolet light to establish a desired groove pattern in the photoresist layer. A dry etching process is then used to remove the nitride and/or oxide layers beneath the groove pattern of the photoresist layer to thereby expose portions of the substrate. Next, the wafer is disposed in a wet etching solution such as potassium hydroxide to form grooves in the exposed portions of the silicon substrate. The wafer is oriented and disposed in the bath as appropriate for forming V-shaped grooves, such that after etching, the angled walls of the grooves can be easily exposed to a dopant beam directly above the wafer, without having to tilt the wafer or beam source. Thereby, the walls of the grooves are easily implanted with dopant.
摘要:
A process for forming a semiconductor integrated circuit with a core area densely populated with active devices and with a periphery area less densely populated with active devices as compared to the core area, comprising the steps of: forming a first layer of first insulator material above a semiconductor substrate having a core area and a periphery area, wherein the first insulator material constitutes a polish stop for polishing processes and also as an oxidation barrier; patterning the first layer of first insulator material to expose first portions of the semiconductor substrate substantially only in the core area while using the first insulator material to substantially mask the periphery area; forming a plurality of trenches into the exposed first portions of semiconductor substrate in the core area; filling the plurality of trenches with an insulator; polishing down to the first layer of first insulator material; removing the first layer of first insulator material; forming a second layer of first insulator material over the core and periphery areas; forming openings down into the second layer of first insulator material to expose second portions of the semiconductor substrate substantially only in the periphery area while using the second layer to substantially mask the core area; and forming an isolation region in the exposed second portions of the semiconductor substrate.