摘要:
Mechanisms are provided for controlling version pressure on a speculative versioning cache. Raw version pressure data is collected based on one or more threads accessing cache lines of the speculative versioning cache. One or more statistical measures of version pressure are generated based on the collected raw version pressure data. A determination is made as to whether one or more modifications to an operation of a data processing system are to be performed based on the one or more statistical measures of version pressure, the one or more modifications affecting version pressure exerted on the speculative versioning cache. An operation of the data processing system is modified based on the one or more determined modifications, in response to a determination that one or more modifications to the operation of the data processing system are to be performed, to affect the version pressure exerted on the speculative versioning cache.
摘要:
Mechanisms are provided for controlling version pressure on a speculative versioning cache. Raw version pressure data is collected based on one or more threads accessing cache lines of the speculative versioning cache. One or more statistical measures of version pressure are generated based on the collected raw version pressure data. A determination is made as to whether one or more modifications to an operation of a data processing system are to be performed based on the one or more statistical measures of version pressure, the one or more modifications affecting version pressure exerted on the speculative versioning cache. An operation of the data processing system is modified based on the one or more determined modifications, in response to a determination that one or more modifications to the operation of the data processing system are to be performed, to affect the version pressure exerted on the speculative versioning cache.
摘要:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
摘要翻译:具有100 petaOPS规模计算的多Petascale高效并行超级计算机,其成本,功耗和占地面积都在降低,并且允许从互连角度来看处理节点的最大封装密度。 超级计算机利用了VLSI的技术进步,实现了许多处理器可以集成到单个专用集成电路(ASIC)中的计算模型。 每个ASIC计算节点包括利用集成到一个管芯中的四个或更多个处理器的片上系统ASIC,每个处理器具有对所有系统资源的完全访问,并且使得处理器能够对诸如计算或消息传递I / O 并且优选地,根据应用内的各种算法阶段实现功能的自适应分割,或者如果I / O或其他处理器未被充分利用,则可以参与计算或通信节点通过五维环面网络互连 使用DMA来最大限度地最大化节点之间的分组通信的吞吐量并最小化等待时间。
摘要:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
摘要翻译:具有100 petaOPS规模计算的多Petascale高效并行超级计算机,其成本,功耗和占地面积都在降低,并且允许从互连角度来看处理节点的最大封装密度。 超级计算机利用了VLSI的技术进步,实现了许多处理器可以集成到单个专用集成电路(ASIC)中的计算模型。 每个ASIC计算节点包括利用集成到一个管芯中的四个或更多个处理器的片上系统ASIC,每个处理器具有对所有系统资源的完全访问,并且使得处理器能够对诸如计算或消息传递I / O 并且优选地,根据应用内的各种算法阶段实现功能的自适应分割,或者如果I / O或其他处理器未被充分利用,则可以参与计算或通信节点通过五维环面网络互连 使用DMA来最大限度地最大化节点之间的分组通信的吞吐量并最小化等待时间。
摘要:
Mechanisms are provided for tracking dependencies of threads in a multi-threaded computer program execution. The mechanisms detect a dependency of a first thread's execution on results of a second thread's execution in an execution flow of the multi-threaded computer program. The mechanisms further store, in a hardware thread dependency vector storage associated with the first thread's execution, an identifier of the dependency by setting at least one bit in the hardware thread dependency vector storage corresponding to the second thread. Moreover, the mechanisms schedule tasks performed by the multi-threaded computer program based on the hardware thread dependency vector storage to minimize squashing of threads.
摘要:
Mechanisms for building approximate data dependences using a moving look-back window are provided. The mechanisms track dependence information for memory accesses over iterations of execution of a portion of code. The mechanisms receive a memory access of an iteration of the portion of code, the memory access having an address for access the memory and an access type indicating at least one of a read or a write access type. An entry in a moving look-back window data structure is generated corresponding to a memory location accessed by the memory access. The entry comprises at least an identification of the address, the access type, and an iteration number corresponding to the iteration of the memory access. The moving look-back window data structure is utilized to determine dependence information for memory accesses over a plurality of iterations of the portion of code.
摘要:
A runtime dependence-aware scheduling of dependent iterations mechanism is provided. Computation is performed for one or more iterations of computer executable code by a main thread. Dependence information is determined for a plurality of memory accesses within the computer executable code using modified executable code using a set of dependence threads. Using the dependence information, a determination is made as to whether a subset of a set of uncompleted iterations in the plurality of iterations is capable of being executed ahead-of-time by the one or more available threads in the data processing system. If the subset of the set of uncompleted iterations in the plurality of iterations is capable of being executed ahead-of-time, the main thread is signaled to skip the subset of the set of uncompleted iterations and the set of assist threads is signaled to execute the subset of the set of uncompleted iterations.
摘要:
Mechanisms are provided for tracking dependencies of threads in a multi-threaded computer program execution. The mechanisms detect a dependency of a first thread's execution on results of a second thread's execution in an execution flow of the multi-threaded computer program. The mechanisms further store, in a hardware thread dependency vector storage associated with the first thread's execution, an identifier of the dependency by setting at least one bit in the hardware thread dependency vector storage corresponding to the second thread. Moreover, the mechanisms schedule tasks performed by the multi-threaded computer program based on the hardware thread dependency vector storage to minimize squashing of threads.
摘要:
A runtime dependence-aware scheduling of dependent iterations mechanism is provided. Computation is performed for one or more iterations of computer executable code by a main thread. Dependence information is determined for a plurality of memory accesses within the computer executable code using modified executable code using a set of dependence threads. Using the dependence information, a determination is made as to whether a subset of a set of uncompleted iterations in the plurality of iterations is capable of being executed ahead-of-time by the one or more available threads in the data processing system. If the subset of the set of uncompleted iterations in the plurality of iterations is capable of being executed ahead-of-time, the main thread is signaled to skip the subset of the set of uncompleted iterations and the set of assist threads is signaled to execute the subset of the set of uncompleted iterations.
摘要:
A runtime dependence-aware scheduling of dependent iterations mechanism is provided. Computation is performed for one or more iterations of computer executable code by a main thread. Dependence information is determined for a plurality of memory accesses within the computer executable code using modified executable code using a set of dependence threads. Using the dependence information, a determination is made as to whether a subset of a set of uncompleted iterations in the plurality of iterations is capable of being executed ahead-of-time by the one or more available threads in the data processing system. If the subset of the set of uncompleted iterations in the plurality of iterations is capable of being executed ahead-of-time, the main thread is signaled to skip the subset of the set of uncompleted iterations and the set of assist threads is signaled to execute the subset of the set of uncompleted iterations.