Abstract:
A method of managing a process relocation operation in a computing system is provided and includes determining respective operating temperatures of first, second and additional nodes of the system, where the first node has an elevated operating temperature and the second node has a normal operating temperature, notifying first and second kernels respectively associated with the first and second nodes, of a swapping condition, initially managing the first and second kernels to swap an application between the first and the second nodes while the swapping condition is in effect, and secondarily managing the first and second kernels to perform a barrier operation to end the swapping condition.
Abstract:
Methods, apparatus, and products for distributing parallel algorithms of a parallel application among compute nodes of an operational group in a parallel computer are disclosed that include establishing a hardware profile, the hardware profile describing thermal characteristics of each compute node in the operational group; establishing a hardware independent application profile, the application profile describing thermal characteristics of each parallel algorithm of the parallel application; and mapping, in dependence upon the hardware profile and application profile, each parallel algorithm of the parallel application to a compute node in the operational group.
Abstract:
Methods, apparatus, and products for distributing parallel algorithms of a parallel application among compute nodes of an operational group in a parallel computer are disclosed that include establishing a hardware profile, the hardware profile describing thermal characteristics of each compute node in the operational group; establishing a hardware independent application profile, the application profile describing thermal characteristics of each parallel algorithm of the parallel application; and mapping, in dependence upon the hardware profile and application profile, each parallel algorithm of the parallel application to a compute node in the operational group.
Abstract:
Power throttling may be used to conserve power and reduce heat in a parallel computing environment. Compute nodes in the parallel computing environment may be organized into groups based on, for example, whether they execute tasks of the same job or receive power from the same converter. Once one of compute nodes in the group detects that a parameter (i.e., temperature, current, power consumption, etc.) has exceeded a first threshold, power throttling on all the nodes in the group may be activated. However, before deactivating power throttling, a plurality of parameters associated with the group of compute nodes may be monitored to ensure they are all below a second threshold. If so, the power throttling for all of the compute nodes is deactivated.
Abstract:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
Abstract:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
Abstract:
Power throttling may be used to conserve power and reduce heat in a parallel computing environment. Compute nodes in the parallel computing environment may be organized into groups based on, for example, whether they execute tasks of the same job or receive power from the same converter. Once one of compute nodes in the group detects that a parameter (i.e., temperature, current, power consumption, etc.) has exceeded a first threshold, power throttling on all the nodes in the group may be activated. However, before deactivating power throttling, a plurality of parameters associated with the group of compute nodes may be monitored to ensure they are all below a second threshold. If so, the power throttling for all of the compute nodes is deactivated.