摘要:
An advanced memory having improved performance, reduced power and increased reliability. A memory device includes a memory array, a receiver for receiving a command and associated data, error control coding circuitry for performing error control checking on the received command, and data masking circuitry for preventing the associated data from being written to the memory array in response to the error control coding circuitry detecting an error in the received command. Another memory device includes a programmable preamble. Another memory device includes a fast exit self-refresh mode. Another memory device includes auto refresh function that is controlled by the characteristic device. Another memory device includes an auto refresh function that is controlled by a characteristic of the memory device.
摘要:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
摘要翻译:具有100 petaOPS规模计算的多Petascale高效并行超级计算机,其成本,功耗和占地面积都在降低,并且允许从互连角度来看处理节点的最大封装密度。 超级计算机利用了VLSI的技术进步,实现了许多处理器可以集成到单个专用集成电路(ASIC)中的计算模型。 每个ASIC计算节点包括利用集成到一个管芯中的四个或更多个处理器的片上系统ASIC,每个处理器具有对所有系统资源的完全访问,并且使得处理器能够对诸如计算或消息传递I / O 并且优选地,根据应用内的各种算法阶段实现功能的自适应分割,或者如果I / O或其他处理器未被充分利用,则可以参与计算或通信节点通过五维环面网络互连 使用DMA来最大限度地最大化节点之间的分组通信的吞吐量并最小化等待时间。
摘要:
A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node may be used individually or simultaneously to work on any combination of computation or communication as required by the particular algorithm being solved or executed at any point in time. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency. In the preferred embodiment, the multiple networks include three high-speed networks for parallel algorithm message passing including a Torus, Global Tree, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. For particular classes of parallel algorithms, or parts of parallel calculations, this architecture exhibits exceptional computational performance, and may be enabled to perform calculations for new classes of parallel algorithms. Additional networks are provided for external connectivity and used for Input/Output, System Management and Configuration, and Debug and Monitoring functions. Special node packaging techniques implementing midplane and other hardware devices facilitates partitioning of the supercomputer in multiple networks for optimizing supercomputing resources.
摘要:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.
摘要翻译:具有100 petaOPS规模计算的多Petascale高效并行超级计算机,其成本,功耗和占地面积都在降低,并且允许从互连角度来看处理节点的最大封装密度。 超级计算机利用了VLSI的技术进步,实现了许多处理器可以集成到单个专用集成电路(ASIC)中的计算模型。 每个ASIC计算节点包括利用集成到一个管芯中的四个或更多个处理器的片上系统ASIC,每个处理器具有对所有系统资源的完全访问,并且使得处理器能够对诸如计算或消息传递I / O 并且优选地,根据应用内的各种算法阶段实现功能的自适应分割,或者如果I / O或其他处理器未被充分利用,则可以参与计算或通信节点通过五维环面网络互连 使用DMA来最大限度地最大化节点之间的分组通信的吞吐量并最小化等待时间。
摘要:
A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node individually or simultaneously work on any combination of computation or communication as required by the particular algorithm being solved. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency. The multiple networks include three high-speed networks for parallel algorithm message passing including a Torus, Global Tree, and a Global Asynchronous network that provides global barrier and notification functions.
摘要:
A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System- On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node individually or simultaneously work on any combination of computation or communication as required by the particular algorithm being solved. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency. The multiple networks include three high-speed networks for parallel algorithm message passing including a Torus, Global Tree, and a Global Asynchronous network that provides global barrier and notification functions.
摘要:
A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node may be used individually or simultaneously to work on any combination of computation or communication as required by the particular algorithm being solved or executed at any point in time. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency. In the preferred embodiment, the multiple networks include three high-speed networks for parallel algorithm message passing including a Torus, Global Tree, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. For particular classes of parallel algorithms, or parts of parallel calculations, this architecture exhibits exceptional computational performance, and may be enabled to perform calculations for new classes of parallel algorithms. Additional networks are provided for external connectivity and used for Input/Output, System Management and Configuration, and Debug and Monitoring functions. Special node packaging techniques implementing midplane and other hardware devices facilitates partitioning of the supercomputer in multiple networks for optimizing supercomputing resources.
摘要:
An advanced memory having improved performance, reduced power and increased reliability. A memory device includes a memory array, a receiver for receiving a command and associated data, error control coding circuitry for performing error control checking on the received command, and data masking circuitry for preventing the associated data from being written to the memory array in response to the error control coding circuitry detecting an error in the received command. Another memory device includes a programmable preamble. Another memory device includes a fast exit self-refresh mode. Another memory device includes auto refresh function that is controlled by the characteristic device. Another memory device includes an auto refresh function that is controlled by a characteristic of the memory device.
摘要:
An advanced memory having improved performance, reduced power and increased reliability. A memory device includes a memory array, a receiver for receiving a command and associated data, error control coding circuitry for performing error control checking on the received command, and data masking circuitry for preventing the associated data from being written to the memory array in response to the error control coding circuitry detecting an error in the received command. Another memory device includes a programmable preamble. Another memory device includes a fast exit self-refresh mode. Another memory device includes auto refresh function that is controlled by the characteristic device. Another memory device includes an auto refresh function that is controlled by a characteristic of the memory device.
摘要:
An optical system of a NX reduction catadioptric relay lens having sub-half micron resolution over the ultraviolet band width is described. A spherical mirror with a stop at the mirror is used to work at substantially the desired reduction ratio and the desired high numerical aperture sufficient to provide the desired high resolution. A beam splitting cube with appropriate coatings is used to form an accessible image of an object on an image plane. Refracting correctors in the path of the slow beam incident on the mirror and in the path of the fast beam reflected on the mirror are designed to fix the aberrations of the image formed by the mirror. The beam splitter coatings are chosen in such a way that beams reflected from and transmitted therethrough suffer no net aberration as a result of multiple reflections within the thin film beam splitter coatings and therefore are substantially free of aberration, distortion and apodization which would result from the beam splitting surface in the absence of these coatings.