Abstract:
A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
Abstract:
An MEMS device has a dynamically variable reference capacitor that provides a reference to a sense capacitance. In some embodiments, a 3-axis accelerometer includes a proof mass suspended above a substrate from an anchor, and a cantilevered Z-axis reference capacitor arm suspended above the substrate from the same anchor. In some embodiments, the proof mass is suspended from a plurality of anchors, and each anchor also supports one or more cantilevered arms, the cantilevered arms forming a dynamically variable reference capacitance.
Abstract:
Multiple-axis resonant accelerometers are based on detection of resonance frequency changes of one or more electrostatically-driven resonator masses due to electrostatic gap changes under acceleration. Specifically, one or more resonator masses are configured to resonate simultaneously in different directions associated with different axes of sensitivity (e.g., X, Y, and/or Z axes). The motion of each resonator mass is monitored through one or more electrostatically-coupled sense electrodes. An acceleration along a particular axis of sensitivity causes a small change in the electrostatic gap(s) between the corresponding resonator mass(es) and the sense electrode(s) associated with that axis of sensitivity, and this electrostatic gap change manifests as a small change in the resonance frequency of the resonator from which an accelerometer output signal can be produced.
Abstract:
Multiple-axis resonant accelerometers are based on detection of resonance frequency changes of one or more electrostatically-driven resonator masses due to electrostatic gap changes under acceleration. Specifically, one or more resonator masses are configured to resonate simultaneously in different directions associated with different axes of sensitivity (e.g., X, Y, and/or Z axes). The motion of each resonator mass is monitored through one or more electrostatically-coupled sense electrodes. An acceleration along a particular axis of sensitivity causes a small change in the electrostatic gap(s) between the corresponding resonator mass(es) and the sense electrode(s) associated with that axis of sensitivity, and this electrostatic gap change manifests as a small change in the resonance frequency of the resonator from which an accelerometer output signal can be produced.
Abstract:
A MEMS product includes a stress-isolated MEMS platform surrounded by a stress-relief gap and suspended from a substrate. The stress-relief gap provides a barrier against the transmission of mechanical stress from the substrate to the platform.
Abstract:
A method of forming a MEMS device provides first and second wafers, where at least one of the first and second wafers has a two-dimensional array of MEMS devices. The method deposits a layer of first germanium onto the first wafer, and a layer of aluminum-germanium alloy onto the second wafer. To deposit the alloy, the method deposits a layer of aluminum onto the second wafer and then a layer of second germanium to the second wafer. Specifically, the layer of second germanium is deposited on the layer of aluminum. Next, the method brings the first wafer into contact with the second wafer so that the first germanium in the aluminum-germanium alloy contacts the second germanium. The wafers then are heated when the first and second germanium are in contact, and cooled to form a plurality of conductive hermetic seal rings about the plurality of the MEMS devices.
Abstract:
In certain exemplary embodiments of the present invention, rather than having two or more electrodes connected to separate bond pads for making electrical connections to separate electrical circuits to perform various electrode functions (e.g., a drive electrode for performing a drive function and a sense electrode for performing a sense function as in FIG. 1), a common electrode that can perform multiple electrode functions is electrically connected to a single bond pad, with the two electrical circuits connected to the single bond pad. The two electrical circuits are then time-multiplexed so that the electrode can be used for both electrode functions. Among other things, such an arrangement reduces the number of bond pads and therefore allows for reduction of the size of the MEMS die.
Abstract:
A single-axis tilt-mode microelectromechanical accelerometer structure. The structure includes a substrate having a top surface defined by a first end and a second end. Coupled to the substrate is a first asymmetrically-shaped mass suspended above the substrate pivotable about a first pivot point on the substrate between the first end and the second end and a second asymmetrically-shaped mass suspended above the substrate pivotable about a second pivot point on the substrate between the first end and the second end. The structure also includes a first set of electrodes positioned on the substrate and below the first asymmetrically-shaped mass and a second set of electrodes positioned on the substrate and below the second asymmetrically-shaped mass.
Abstract:
An MEMS device has a dynamically variable reference capacitor that provides a reference to a sense capacitance. In some embodiments, a 3-axis accelerometer includes a proof mass suspended above a substrate from an anchor, and a cantilevered Z-axis reference capacitor arm suspended above the substrate from the same anchor. In some embodiments, the proof mass is suspended from a plurality of anchors, and each anchor also supports one or more cantilevered arms, the cantilevered arms forming a dynamically variable reference capacitance.
Abstract:
A method of forming a MEMS device provides first and second wafers, where at least one of the first and second wafers has a two-dimensional array of MEMS devices. The method deposits a layer of first germanium onto the first wafer, and a layer of aluminum-germanium alloy onto the second wafer. To deposit the alloy, the method deposits a layer of aluminum onto the second wafer and then a layer of second germanium to the second wafer. Specifically, the layer of second germanium is deposited on the layer of aluminum. Next, the method brings the first wafer into contact with the second wafer so that the first germanium in the aluminum-germanium alloy contacts the second germanium. The wafers then are heated when the first and second germanium are in contact, and cooled to form a plurality of conductive hermetic seal rings about the plurality of the MEMS devices.