摘要:
Transistors are manufactured by growing germanium source and drain regions, implanting dopant impurities into the germanium, and subsequently annealing the source and drain regions so that the dopant impurities diffuse through the germanium. The process is simpler than a process wherein germanium is insitu doped with p-type or n-type impurities. The dopant impurities diffuse easily through the germanium but not easily through underlying silicon, so that an interface between the germanium and silicon acts as a diffusion barrier and ensures positioning of the dopant atoms in the regions of the device where they improve transistor performance.
摘要:
A composite of germanium film for a semiconductor device and methods of making the same. The method comprises growing a graded germanium film on a semiconductor substrate in a deposition chamber while simultaneously decreasing a deposition temperature and decreasing a silicon source gas and increasing a germanium source gas over a predetermined amount of time. The graded germanium film comprises an ultra-thin silicon-germanium buffer layer and a germanium film.
摘要:
Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
摘要:
Various embodiments of the invention relate to a CMOS device having (1) an NMOS channel of silicon material selectively deposited on a first area of a graded silicon germanium substrate such that the selectively deposited silicon material experiences a tensile strain caused by the lattice spacing of the silicon material being smaller than the lattice spacing of the graded silicon germanium substrate material at the first area, and (2) a PMOS channel of silicon germanium material selectively deposited on a second area of the substrate such that the selectively deposited silicon germanium material experiences a compressive strain caused by the lattice spacing of the selectively deposited silicon germanium material being larger than the lattice spacing of the graded silicon germanium substrate material at the second area.
摘要:
Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
摘要:
Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
摘要:
Various embodiments of the invention relate to a PMOS device having a transistor channel of silicon germanium material on a substrate, a gate dielectric having a dielectric constant greater than that of silicon dioxide on the channel, a gate electrode conductor material having a work function in a range between a valence energy band edge and a conductor energy band edge for silicon on the gate dielectric, and a gate electrode semiconductor material on the gate electrode conductor material.
摘要:
An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
摘要:
The mobility of carriers may be increased in strained channel epitaxial source/drain transistors. Doped silicon material may be blanket deposited after removing ion implanted source/drain regions. The blanket deposition forms amorphous films over non-source/drain areas and crystalline films in source/drain regions. By using an etch which is selective to amorphous silicon, the amorphous material may be removed. This may avoid some problems associated with selective deposition of the doped silicon material.
摘要:
An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.