摘要:
A resistive random access memory array may be formed on the same substrate with a fuse array. The random access memory and the fuse array may use the same active material. For example, both the fuse array and the memory array may use a chalcogenide material as the active switching material. The main array may use a pattern of perpendicular sets of trench isolations and the fuse array may only use one set of parallel trench isolations. As a result, the fuse array may have a conductive line extending continuously between adjacent trench isolations. In some embodiments, this continuous line may reduce the resistance of the conductive path through the fuses.
摘要:
Some embodiments include a fuse having a tungsten-containing structure directly contacting an electrically conductive structure. The electrically conductive structure may be a titanium-containing structure. An interface between the tungsten-containing structure and the electrically conductive structure is configured to rupture when current through the interface exceeds a predetermined level. Some embodiments include a method of forming and using a fuse. The fuse is formed to have a tungsten-containing structure directly contacting an electrically conductive structure. An interface between the tungsten-containing structure and the electrically conductive structure is configured to rupture when current through the interface exceeds a predetermined level. Current exceeding the predetermined level is passed through the interface to rupture the interface.
摘要:
A self-aligned vertical heater element is deposited directly on the silicide of a selection device, and a phase change chalcogenide material is deposited directly on the vertical heater element. The fabrication process allows for self-alignment between the chalcogenide line and vertical heater element. In an embodiment, the vertical heater element is L-shaped, having a vertical wall along the wordline direction and a horizontal base. The vertical wall and the horizontal base may have the same thickness.
摘要:
A resistive random access memory array may be formed on the same substrate with a fuse array. The random access memory and the fuse array may use the same active material. For example, both the fuse array and the memory array may use a chalcogenide material as the active switching material. The main array may use a pattern of perpendicular sets of trench isolations and the fuse array may only use one set of parallel trench isolations. As a result, the fuse array may have a conductive line extending continuously between adjacent trench isolations. In some embodiments, this continuous line may reduce the resistance of the conductive path through the fuses.
摘要:
Memory cells having heaters with angled sidewalls and methods of forming the same are described herein. As an example, a method of forming an array of resistive memory cells can include forming a first resistive memory cell having a first heater element angled with respect to a vertical plane, forming a second resistive memory cell adjacent to the first resistive memory cell and having a second heater element angled with respect to the vertical plane and toward the first heater, and forming a third resistive memory cell adjacent to the first resistive memory cell and having a third heater element angled with respect to the vertical plane and away from the first heater element.
摘要:
Some embodiments include a fuse having a tungsten-containing structure directly contacting an electrically conductive structure. The electrically conductive structure may be a titanium-containing structure. An interface between the tungsten-containing structure and the electrically conductive structure is configured to rupture when current through the interface exceeds a predetermined level. Some embodiments include a method of forming and using a fuse. The fuse is formed to have a tungsten-containing structure directly contacting an electrically conductive structure. An interface between the tungsten-containing structure and the electrically conductive structure is configured to rupture when current through the interface exceeds a predetermined level. Current exceeding the predetermined level is passed through the interface to rupture the interface.
摘要:
Memory cells having heaters with angled sidewalls and methods of forming the same are described herein. As an example, a method of forming an array of resistive memory cells can include forming a first resistive memory cell having a first heater element angled with respect to a vertical plane, forming a second resistive memory cell adjacent to the first resistive memory cell and having a second heater element angled with respect to the vertical plane and toward the first heater, and forming a third resistive memory cell adjacent to the first resistive memory cell and having a third heater element angled with respect to the vertical plane and away from the first heater element.
摘要:
A method is disclosed for forming vertical bipolar junction transistors including a regular array of base contact pillars and emitter contact pillars with a width below the minimum lithographical resolution F of the lithographic technique employed. In an embodiment, the pillar array features have a dimension of approximately F/2, though this dimension could be reduced down to other values compatible with embodiments of the invention. A storage element, such as a phase change storage element, can be formed above the regular array of base contact pillars and emitter contact pillars.
摘要:
A forms spacers in a electronic device integrated on a semiconductor substrate that includes: first and second transistors each comprising a gate electrode projecting from the substrate and respective source/drain regions. The process comprises: forming in cascade a first protective layer and a first conformal insulating layer of a first thickness on the whole electronic device; forming a first mask to cover the first transistor; removing the first conformal insulating layer not covered by the first mask; removing the first mask; forming a second conformal insulating layer of a second thickness on the whole device; and removing the insulating layers until the protective layer is exposed to form first spacers of a first width on the side walls of the gate electrodes of the first transistor and second spacers of a second width on the side walls of the gate electrodes of the second transistor.
摘要:
A forms spacers in a electronic device integrated on a semiconductor substrate that includes: first and second transistors each comprising a gate electrode projecting from the substrate and respective source/drain regions. The process comprises: forming in cascade a first protective layer and a first conformal insulating layer of a first thickness on the whole electronic device; forming a first mask to cover the first transistor; removing the first conformal insulating layer not covered by the first mask; removing the first mask; forming a second conformal insulating layer of a second thickness on the whole device; and removing the insulating layers until the protective layer is exposed to form first spacers of a first width on the side walls of the gate electrodes of the first transistor and second spacers of a second width on the side walls of the gate electrodes of the second transistor.