摘要:
Additional variants of the method of etching structures into an etching body, in particular recesses in a silicon body that are laterally defined in a precise manner by an etching mask, using a plasma, is described. In addition, the use of this method in the introduction of structures, in particular trenches having a high aspect ratio, into a dielectric layer or a dielectric base body and in a layer of silicon is described, isotropic underetching and/or isotropic, sacrificial-layer etching, in particular using fluorine radicals or a highly oxidizing fluorine compound such as ClF3, being performed after the production of the structures in at least some areas in the case of the layer made of silicon.
摘要:
A device and a method for etching a substrate, in particular a silicon body, by using an inductively coupled plasma. A high-frequency electromagnetic alternating field is generated using an ICP source, and an inductively coupled plasma composed of reactive particles is generated by the action of a high-frequency electromagnetic alternating field on a reactive gas in a reactor. In addition, a static or time-variable magnetic field is generated between the substrate and the ICP source, for which purpose at least two magnetic field coils arranged one above the other are provided. The direction of the resulting magnetic field is also approximately parallel to the direction defined by the tie line connecting the substrate and the inductively coupled plasma. Finally, a first component magnetic field is generated with a first magnetic field coil, and a second component magnetic field which is equally strong at an equivalent site is generated with a second magnetic field coil, the two component magnetic fields being oriented in opposite directions.
摘要:
A device and a method for etching a substrate, in particular a silicon body, by using an inductively coupled plasma. A high-frequency electromagnetic alternating field is generated using an ICP source, and an inductively coupled plasma composed of reactive particles is generated by the action of a high-frequency electromagnetic alternating field on a reactive gas in a reactor. In addition, a static or time-variable magnetic field is generated between the substrate and the ICP source, for which purpose at least two magnetic field coils arranged one above the other are provided. The direction of the resulting magnetic field is also approximately parallel to the direction defined by the tie line connecting the substrate and the inductively coupled plasma. Finally, a first component magnetic field is generated with a first magnetic field coil, and a second component magnetic field which is equally strong at an equivalent site is generated with a second magnetic field coil, the two component magnetic fields being oriented in opposite directions.
摘要:
A device and a method capable of being carried out therewith for, preferably, anisotropically etching a substrate (10), in particular, a patterned silicon body, with the assistance of a plasma (14), is proposed. In the process, the plasma (14) is produced by a plasma source (13) to which a high-frequency generator (17) is connected for applying a high-frequency power. Moreover, this high-frequency generator is in communication with a first means which periodically changes the high-frequency power applied to the plasma source (13). Besides, provision is preferably made for a second means which adapts the output impedance of the high-frequency generator (17) to the prevailing impedance of the plasma source (13) which changes as a function of the high-frequency power. The proposed anisotropic etching method is carried out in separate and alternating etching and polymerization steps, a higher high-frequency power of up to 5000 watts being, at least temporarily, applied to the plasma source (13) during the etching steps than during the deposition steps. The proposed device is also suitable for igniting a plasma (14) and for adjusting upward or pulsing a plasma power from a starting value to up to 5000 watts.
摘要:
A method for detecting the transition between different materials in semiconductor structures during alternating etching and covering steps for anisotropic depthwise etching of defined patterns performed using a plasma. Provision is made for ascertaining, by way of an intensity measurement of at least one specific substance contained in the plasma, the beginning of each etching step by the fact that a characteristic threshold is reached, this also being achievable by way of an external synchronization signal which indicates the beginning and end of each etching step; for then, when the threshold value is reached, starting a delay time which is longer than the course of a first concentration maximum; for a second concentration maximum then to be ascertained after the delay time has elapsed; and for the second concentration maxima of the etching steps to be monitored as to whether they exceed or fall below the predefined value, in order to detect a material transition.
摘要:
A method for selective etching of an SiGe mixed semiconductor layer on a silicon semiconductor substrate by dry chemical etching of the SiGe mixed semiconductor layer with the aid of an etching gas selected from the group including ClF3 and/or ClF5, a gas selected from the group including Cl2 and/or HCl being added to the etching gas.
摘要:
A plasma processing system for etching a substrate using a highly dense plasma in a reactor. An ICP coil having a first coil end and a second coil end generating a high-frequency electromagnetic alternating field in the reactor which acts on a reactive gas and, as an inductively coupled plasma source, produces the highly dense plasma from reactive particles and ions. The two coil ends each communicate via a feed point with a high-frequency infeed, which applies in each case a high-frequency a.c. voltage of the same frequency to the first coil end and to the second coil end (21, 21′). The two high-frequency a.c. voltages applied at the two coil ends are connected to a symmetrical, capacitive network via a &lgr;2 -delay line linking the first feed point and the second feed point and are, at least nearly in phase opposition to one another, and have at least nearly the same amplitudes.
摘要:
A method and a device suitable for implementing this method for etching a substrate (10), a silicon body in particular, using an inductively coupled plasma (14) are proposed. For this purpose, a radio-frequency electromagnetic alternating field is generated with an ICP source (13), the alternating field generating an inductively coupled plasma (14) of reactive particles in a reactor (15). The inductively coupled plasma (14) arises by the action of the radio-frequency electromagnetic alternating field on a reactive gas. Furthermore, a device is provided with which a plasma power injected into the inductively coupled plasma (14) via the radio-frequency electromagnetic alternating field with the ICP source (13) is capable of being pulsed so that at least from time to time a pulsed radio-frequency power can be injected into the inductively coupled plasma (14) as a pulsed radio-frequency power. In addition, the pulsed plasma power can be combined or correlated with a pulsed magnetic field and/or a pulsed substrate electrode power.
摘要:
A method for applying a protective resist, such as a negative resist, to a prepatterned wafer in which the resist is applied to the previously generated patterns by a distribution system which includes a holder for the wafer, an xy sliding unit with a programming device, and a dispensing device with a syringe.
摘要:
A method is proposed for etching a first silicon layer (15) that is provided with an etching mask (10) for defining lateral recesses (21). In a first plasma etching process, trenches (21′) are produced in the region of the lateral recesses (21) by anisotropic etching. The first etching process comes virtually to a standstill as soon as a separating layer (12, 14, 14′, 16), buried between the first silicon layer (15) and a further silicon layer (17), is reached. This separating layer is thereupon etched through in exposed regions (23, 23′) by a second etching process. A subsequent third etching process then etches the further silicon layer (17, 17′). In this manner, free-standing structures for sensor elements can be produced in a simple process which is completely compatible with the method steps in IC integration technology.