摘要:
A system and method are disclosed for calibrating non-linear behavior using attenuated stimuli and responses which allows for calibration with unknown stimulus and less expensive sources and receivers. The device under test is stimulated with a signal and then an attenuated version of the same signal, so that non-linear differences between responses can be attributed to the device rather than the signal source. Alternatively, or in conjunction with attenuation of the stimulus, the output of the device at different response amplitudes can be selectively attenuated such that the receiver measures approximately the same amplitude. This allows non-linear differences between measurements to be attributed to the device rather than the receiver. Two or more different signal sources can also be used, where responses are measured for each signal individually and then for at least one linear combination of signals.
摘要:
A microwave imaging system uses microwave radiation provided by a microwave source to image targets. The system includes an array of antenna elements that are capable of being programmed with a respective transmission coefficient to direct the microwave illumination from the microwave source toward a position on the target. The antenna elements are further capable of being programmed with a respective additional transmission coefficient to receive reflected microwave illumination reflected from the position on the target and direct the reflected microwave illumination towards a microwave receiver. A processor is operable to measure an intensity of the reflected microwave illumination to determine a value of a pixel within an image of the target. Multiple beams can be directed towards the target to obtain corresponding pixel values for use by the processor in constructing the image.
摘要:
A security inspection system uses microwave radiation to image targets on a human subject or other item. The system includes an array of antenna elements that are programmable with a respective phase delay to direct a beam of microwave illumination toward a target on the human subject or item. The antenna elements are further capable of receiving reflected microwave illumination reflected from the target. A processor is operable to measure an intensity of the reflected microwave illumination to determine a value of a pixel within an image of the human subject or item. Multiple beams can be directed towards the human subject or item to obtain corresponding pixel values for use by the processor in constructing the image.
摘要:
A nanoscale displacement detector includes a cantilever integrated with an optical resonator, referred to herein as a “microresonator.” The microresonator and cantilever are configured such that displacement of the cantilever relative to the microresonator causes a change in the resonant frequency of the microresonator. The change in the resonant frequency of the microresonator is used to monitor cantilever displacement. In an embodiment, the microresonator includes a cavity that faces the cantilever and the cantilever includes a protrusion that faces the microresonator and is aligned with the cavity.
摘要:
An imaging system includes an optical (visible-light or near IR) imaging system and a microwave imaging system. The optical imaging system captures an optical image of the object, produces optical image data representing the optical image and extracts optical image information from the optical image data. The microwave imaging system produces microwave image data representing a microwave image of the object in response to the optical image information.
摘要:
Aspects of the invention include plasma generating devices having alternative ground geometries and systems thereof, as well as methods of using the same in plasma generation. The plasma generating devices of the invention include a resonator with a discharge gap disposed on a substrate and a ground element. Embodiments of the ground element of the plasma generating devices of the invention include those that are internal, external, coplanar or a combination thereof. The subject plasma generating devices, systems and methods find use in a variety of different applications.
摘要:
A microwave imaging system uses microwave radiation provided by a microwave source to image targets. The system includes an array of antenna elements that are capable of being programmed with a respective direction coefficient to direct the microwave illumination from the microwave source toward a position on the target. The antenna elements are further capable of being programmed to receive reflected microwave illumination reflected from the position on the target. A processor is operable to measure an intensity of the reflected microwave illumination to determine a value of a pixel within an image of the target. Multiple beams can be directed towards the target to obtain corresponding pixel values for use by the processor in constructing the image.
摘要:
An imaging system includes an optical (visible-light or near IR) imaging system and a microwave imaging system. The optical imaging system captures an optical image of the object, produces optical image data representing the optical image and extracts optical image information from the optical image data. The microwave imaging system produces microwave image data representing a microwave image of the object in response to the optical image information.
摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
摘要:
A handheld microwave imaging device provides screening of objects, such as persons and other items. The imaging device includes an antenna array of antenna elements, each capable of being programmed with a respective direction coefficient to direct microwave illumination toward a target associated with the object, and each capable of being programmed with a respective additional direction coefficient to receive reflected microwave illumination reflected from the target. The imaging device further includes a processor operable to measure an intensity of the reflected microwave illumination to determine a value of a voxel within a microwave image of the object. The antenna array is compliantly mounted in a first portion of a support structure, while a second portion of the support structure defines a handle for enabling a user to control movement of the device.