摘要:
One embodiment provides a medical device comprising a base material and a bioactive in contact with the base material, the bioactive having a proton binding site with a non-ionic form and an ionic form, the bioactive being less soluble in water when the proton binding site is in the non-ionic form than when the proton binding site is in the ionic form, wherein at least 5% w/w of the bioactive is present with the proton binding site in the non-ionic form and wherein the bioactive is not an anesthetic. Another embodiment provides such a medical device where the bioactive is an anesthetic and where the device is not a ureteral stent. Another aspect provides method of manufacturing such devices.
摘要:
Methods of coating a medical device are provided to improve coating uniformity and reduce coating irregularities while reducing direct coating of the luminal surface of the medical device. Preferably, methods of coating a tubular medical device include the steps of: positioning the tubular medical device around a mandrel coating assembly, mounting the tubular medical device on the mandrel coating assembly and spraying a coating solution including a therapeutic agent and a solvent onto the abluminal surface of the tubular medical device mounted on the mandrel coating assembly. The mandrel coating assembly may include an axial member of a diameter that is less than the diameter of the lumen of the tubular medical device and at least one annular projection extending from the axial member to an outer surface having a diameter greater than or substantially equal to the diameter of the lumen of the medical device. Improved coating uniformity may be achieved by providing an annular space between the luminal surface of the medical device and an axial member. Coating on the luminal surface may be minimized by providing an axial member having an outer diameter that is greater than the maximum width or length of the spray contacting the axial member after passing through the openings in the medical device.
摘要:
Methods of coating a medical device are provided to improve coating uniformity and reduce coating irregularities while reducing direct coating of the luminal surface of the medical device. Preferably, methods of coating a tubular medical device include the steps of: positioning the tubular medical device around a mandrel coating assembly, mounting the tubular medical device on the mandrel coating assembly and spraying a coating solution including a therapeutic agent and a solvent onto the abluminal surface of the tubular medical device mounted on the mandrel coating assembly. The mandrel coating assembly may include an axial member of a diameter that is less than the diameter of the lumen of the tubular medical device and at least one annular projection extending from the axial member to an outer surface having a diameter greater than or substantially equal to the diameter of the lumen of the medical device. Improved coating uniformity may be achieved by providing an annular space between the luminal surface of the medical device and an axial member. Coating on the luminal surface may be minimized by providing an axial member having an outer diameter that is greater than the maximum width or length of the spray contacting the axial member after passing through the openings in the medical device.
摘要:
The present invention provides an implantable medical device comprising a bioactive agent and poly(alkyl cyanoacrylate) polymer. In one embodiment of the invention, the bioactive agent is a water-soluble material, such as an antisense agent.
摘要:
Methods of delivering a bioactive material to a body vessel are disclosed. The method steps can include providing an expandable medical device with a coating having a bioactive layer, and providing a second layer of a biodegradable polymer positioned over the bioactive layer. The second layer provides for controlled release of the bioactive material from the bioactive layer. The medical device is inserted into a body vessel using a catheter such that the medical device contacts the body vessel.
摘要:
This invention relates to medical devices and an angiotensin II type 2 (AT2) receptor antagonist compound, the medical device being adapted to release the AT2 receptor antagonist compound within a body of a patient. This invention also relates to medical devices and methods of treatment of disease, such as aneurysms and aortic dissection. Medical devices may include coated stents, grafts, stent grafts, balloons and catheters.
摘要:
An implant comprises a structure that may be implanted into tissue and that has a first material property at normal body temperature. The first material property is variable at elevated temperatures above normal body temperature. The implant also has a plurality of particles dispersed in the structure that are adapted to convert incident radiation into heat energy when irradiated with electromagnetic radiation. The particles are in thermal contact with the structure such that exposure of the particles to incident radiation raises the temperature of the structure thereby changing the first material property relative to the first material property at normal body temperature.
摘要:
This disclosure relates to implantable medical devices coated with a taxane therapeutic agent, such as paclitaxel, in one or more solid form(s) having varying dissolution rates. Particularly preferred coatings comprise amorphous and/or solvated solid forms of taxane therapeutic agents that provide durable coatings that release the taxane over a desired period of time, which can be varied in the absence of a polymer by selecting the type and amount of solid forms of the taxane therapeutic agent in the coating. Other preferred embodiments relate to methods of coating medical devices and methods of treatment. The coatings can provide a sustained release of the taxane therapeutic agent within a body vessel without containing a polymer to achieve the desired rate of paclitaxel elution.
摘要:
This disclosure relates to endolumenal medical devices coated with a taxane therapeutic agent in one or more solid form(s) having varying dissolution rates. Particularly preferred coatings comprise amorphous paclitaxel, dihydrate paclitaxel, or combinations thereof that provide durable coatings that release paclitaxel over a desired period of time, which can be on the order of hours, days or weeks. Preferred embodiments relate to medical device coatings of paclitaxel, or paclitaxel analogs or derivatives, having one or more polymorph solid forms that provide a prolonged release of paclitaxel within a body vessel without requiring a polymer carrier or barrier layer to achieve the desired rate of paclitaxel elution.
摘要:
Metallic stents are treated with a gaseous species in a plasma state under conditions causing the species to polymerize and to be deposited in polymerized form on the metallic stent surface prior to the application of a drug-polymer mixture, which is done by conventional non-plasma deposition methods. The drug-polymer mixture once applied forms a coating on the stent surface that releases the drug in a time-release manner and gradually erodes, leaving only the underlying plasma-deposited polymer. In certain cases, the plasma-deposited polymer itself erodes or dissolves into the physiological medium over an extended period of time, leaving only the metallic stent. While the various polymers and drug remain on the stent, the plasma-deposited polymer enhances the adhesion of the drug-polymer anchor coating and maintains the coating intact upon exposure to the mechanical stresses encountered during stent deployment.