摘要:
A microfluidic device for in-line sample preparation of one or more materials. The microfludic device comprises an in-line tangential flow component. The in-line tangential flow component comprises a first channel through which the sample flows; and one or more additional channels. The first channel and the one ore more channels are separated by a membrane; and wherein a differential is present between the first channel and additional channel that is separated by the membrane.
摘要:
A method of making a membrane assembly is provided. The method comprises forming an inorganic membrane layer disposed on a substrate, and forming a plurality of macropores in the substrate at least in part using anodization. Further, a membrane assembly is provided. The membrane assembly comprises a filtering membrane that is coupled to an anodized substrate comprising a plurality of macropores.
摘要:
A microfluidic device for detecting one or more molecules of interest comprising: a non-conductive substrate; wherein the non-conductive substrate is provided with a plurality of thermally active elements is provided. A method for selectively functionalizing a plurality of thermally active elements is also provided.
摘要:
A composite membrane assembly is provided. The composite membrane assembly comprises a porous substrate, a filtering membrane at least partially coupled to the porous substrate, a polymer membrane at least partially coupled to the filtering membrane, and an interface material at least partially disposed between the filtering membrane and the polymer membrane.
摘要:
A composite detection device having in-line desalting is provided. The composite detection device comprises a membrane configured for desalting at least a portion of an analyte stream, and a nanostructure for detecting a bio-molecule or a bio-molecule interaction, wherein the nanostructure and the membrane are arranged such that an analyte stream desalted at least in part by the membrane is detected by the nanostructure. A bio-sending detection system having the composite detection device and method of fabrication of the composite detection device are also provided.
摘要:
A method of making a membrane assembly is provided. The method comprises forming an inorganic membrane layer disposed on a substrate, and forming a plurality of macropores in the substrate at least in part using anodization. Further, a membrane assembly is provided. The membrane assembly comprises a filtering membrane that is coupled to an anodized substrate comprising a plurality of macropores.
摘要:
A composite detection device having in-line desalting is provided. The composite detection device comprises a membrane configured for desalting at least a portion of an analyte stream, and a nanostructure for detecting a bio-molecule or a bio-molecule interaction, wherein the nanostructure and the membrane are arranged such that an analyte stream desalted at least in part by the membrane is detected by the nanostructure. A bio-sending detection system having the composite detection device and method of fabrication of the composite detection device are also provided.
摘要:
A biosensing FET device, comprising a plurality of nanostructured SOI channels, that is adapted to operate in solutions having a high ionic strength and provides improves sensitivity and detection. Generally, the biosensing device comprises an underlying substrate layer, an insulator and a semiconductor layer and a plurality of channels in the semiconductor layer comprising a plurality of whole or partially formed nanopores in the channels.
摘要:
A biosensing FET device, comprising a plurality of nanostructured SOI channels, that is adapted to operate in solutions having a high ionic strength and provides improves sensitivity and detection. Generally, the biosensing device comprises an underlying substrate layer, an insulator and a semiconductor layer and a plurality of channels in the semiconductor layer comprising a plurality of whole or partially formed nanopores in the channels.
摘要:
Electrophoresis systems and methods comprise an electrophoresis device, wherein the electrophoresis device comprises a loading channel, an injection channel, and a separation channel. The loading channel is in fluid communication with a first and second sample port. The injection channel is connected to the loading channel to form a first intersection. The separation channel is connected to the injection channel to form a second intersection and in fluid communication with a first and second reservoir, and wherein the injection channel is in fluid communication with a third reservoir. The electrophoresis system further comprises electrodes coupled to the first sample port and the third reservoir, and the first reservoir and the second reservoir, respectively, that are adapted to move the sample into the loading channel towards the third reservoir and form a sample plug in the second intersection, and to further move the sample plug into the separation channel towards the second reservoir.