摘要:
The present invention provides a method for enhancing uni-directional diffusion of a metal during silicidation by using a metal-containing silicon alloy in conjunction with a first anneal in which two distinct thermal cycles are performed. The first thermal cycle of the first anneal is performed at a temperature that is capable of enhancing the uni-directional diffusion of metal, e.g., Co and/or Ni, into a Si-containing layer. The first thermal cycle causes an amorphous metal-containing silicide to form. The second thermal cycle is performed at a temperature that converts the amorphous metal-containing silicide into a crystallized metal rich silicide that is substantially non-etchable as compared to the metal-containing silicon alloy layer or a pure metal-containing layer. Following the first anneal, a selective etch is performed to remove any unreacted metal-containing alloy layer from the structure. A second anneal is performed to convert the metal rich silicide phase formed by the two thermal cycles of the first anneal into a metal silicide phase that is in its lowest resistance phase. A metal silicide is provided whose thickness is self-limiting.
摘要:
A method for forming a metal silicide contact for a semiconductor device includes forming a refractory metal layer over a substrate, including active and non-active area of said substrate, and forming a cap layer over the refractory metal layer. A counter tensile layer is formed over the cap layer, wherein the counter tensile layer is selected from a material such that an opposing directional stress is created between the counter tensile layer and the cap layer, with respect to a directional stress created between the refractory metal layer and the cap layer.
摘要:
An interconnect structure having an incomplete via opening is processed to deepen a via opening and to expose a metal line. In case the interconnect structure comprises a metal pad or a blanket metal layer, the metal pad or the metal layer is removed selective to an underlying dielectric layer to expose the incomplete via opening. Another dielectric layer is formed within the incomplete via opening to compensated for differences in the total dielectric thickness above the metal line relative to an optimal dielectric stack. A photoresist is applied thereupon and patterned. An anisotropic etch process for formation of a normal via opening may be employed with no or minimal modification to form a proper via opening and to expose the metal line. A metal pad is formed upon the metal line so that electrical contact is provided between the metal pad and the metal line.
摘要:
An integrated circuit (IC) conductor and the process of making the conductor. The conductor may be a monofilament conductor, a clad conductor or a coaxial conductor. A trench is formed in a dielectric layer. An outer material layer is deposited on the dielectric layer and in the trench, thick enough that the outer material layer merges together in a seam over the trench forming a void under the seam. The outer material layer is dielectric for the monofilament conductor, a cladding material for the clad conductor and conducting material for the coaxial conductor. The void is filled with a conductor for a monofilament or clad conductors. An inner dielectric liner layer is formed on the walls of the void and a core conductor is formed on the liner layer for the coaxial conductor.
摘要:
A method of protecting a mold having at least one substantially planar surface provided with a plurality of mold cavities includes inserting a plurality of mandrels into respective ones of the plurality of mold cavities, depositing a layer of mold protection material onto the at least one substantially planar surface and the plurality of mandrels, and removing the plurality of mandrels from the mold substrate.
摘要:
A method for planarizing a dielectric layer on a semiconductor wafer is provided. In one aspect, the wafer is coated with a resist and the resist selectively removed forming an uncoated peripheral portion of the wafer. The partially coated wafer is then exposed to an etchant such as RIE to etch the dielectric material not covered by the resist and forming a profiled dielectric layer having a thinner peripheral dielectric portion and a remaining thicker original dielectric central portion. The profiled wafer is then planarized using CMP. The dielectric layer is typically SiO2, PSG, BSP, or BPSG. In another method and apparatus of the invention, a dielectric coated wafer is secured to a rotating turntable and a liquid etchant sprayed at the periphery of the wafer from a distribution conduit to etch and remove dielectric from a circumferential edge of the wafer forming a profiled dielectric layer as above which is then planarized by CMP. In another aspect of the invention, a CMP polished semiconductor wafer having an edge bead is planarized by polishing only the edge bead of the dielectric layer using a special polishing tool or a CMP apparatus to remove the edge bead from the dielectric layer. Planarized semiconductor wafers made using the method and apparatus of the invention are also provided.
摘要:
A method of forming a mold having a protective layer includes forming a mold substrate having at least one substantially planar surface, depositing a layer of mold protection material onto the at least one substantially planar surface, and etching a plurality of cavities into the at least one substantially planar surface through the mold protection layer.
摘要:
Methods, systems, and computer program products for managing movement of work-in-process materials between processing units in an automated manufacturing environment are provided. A system includes a host system in communication with a work-in-process (WIP) material lot. The system also includes an application executing on the host. The application implements a method that includes tracking a position of the WIP material lot, receiving a list of the processing units designated to be inoperative during a down time, and receiving a start time and a duration of the down time. The method also includes determining a maximum dwell time for each of the designated processing units and scheduling movement of the WIP material lot during an interim between a current time and the start time of the down time based on current position of the work-in-process material lot, the current time, the start time and duration of the down time, and the maximum dwell time.
摘要:
Methods, systems, and computer program products for managing movement of work-in-process materials between processing units in an automated manufacturing environment are provided. A system includes a host system in communication with a work-in-process (WIP) material lot. The system also includes an application executing on the host. The application implements a method that includes tracking a position of the WIP material lot, receiving a list of the processing units designated to be inoperative during a down time, and receiving a start time and a duration of the down time. The method also includes determining a maximum dwell time for each of the designated processing units and scheduling movement of the WIP material lot during an interim between a current time and the start time of the down time based on current position of the work-in-process material lot, the current time, the start time and duration of the down time, and the maximum dwell time.
摘要:
A method for planarizing a dielectric layer on a semiconductor wafer is provided. In one aspect, the wafer is coated with a resist and the resist selectively removed forming an uncoated peripheral portion of the wafer. The partially coated wafer is then exposed to an etchant such as RIE to etch the dielectric material not covered by the resist and forming a profiled dielectric layer having a thinner peripheral dielectric portion and a remaining thicker original dielectric central portion. The profiled wafer is then planarized using CMP. The dielectric layer is typically SiO.sub.2, PSG, BSP, or BPSG. In another method and apparatus of the invention, a dielectric coated wafer is secured to a rotating turntable and a liquid etchant sprayed at the periphery of the wafer from a distribution conduit to etch and remove dielectric from a circumferential edge of the wafer forming a profiled dielectric layer as above which is then planarized by CMP. In another aspect of the invention, a CMP polished semiconductor wafer having an edge bead is planarized by polishing only the edge bead of the dielectric layer using a special polishing tool or a CMP apparatus to remove the edge bead from the dielectric layer. Planarized semiconductor wafers made using the method and apparatus of the invention are also provided.