Abstract:
Methods for applying a hydrophobic coating to various components within a computing device are disclosed. More specifically, a hydrophobic coating can be applied by a plasma assisted chemical vapor deposition (PACVD) process to a fully assembled circuit board. Frequently, a fully assembled circuit board can have various components such as electromagnetic interference (EMI) shields which cover water sensitive electronics. A method is disclosed for perforating portions of the EMI shields that overlay the water sensitive electronics. Methods of sealing board to board connectors are also disclosed. In one embodiment solder leads of the board to board connectors can be covered by a silicone seal.
Abstract:
Oxide coatings that reduce or eliminate the appearance of thin film interference coloring are described. In some embodiments, the oxide coatings are configured to reduce the appearance of fingerprints. In some cases, the oxide coatings are sufficiently thick to increase the optical path difference of incident light, thereby reducing any inference coloring by the fingerprint to a non-visible level. In some embodiments, the oxide coatings have a non-uniform thickness that changes the way light reflects off of interfaces of the oxide coating, thereby reducing or eliminating any thin film interference coloring caused by the oxide coatings themselves or by a fingerprint.
Abstract:
An apparatus with a vessel (20), a first induction source (30), and a second induction source (32) in the melt zone (12). The first induction source (30) is used to melt the material received in the vessel (20). The second induction source (32) is used to contain the material in a meltable form within the vessel (20) during melting. The coils (26) of each of the first and second induction sources (30, 32) can be arranged such that they intertwine in an alternate fashion or that they are in sets in a series. The coils (26) of the sources (30, 32) can also sequentially receive power such that the material is moved through the ejection path after melting and into an adjacent mold. The vessel (20) can be positioned along a horizontal axis (X). The apparatus can be used to melt and mold amorphous alloys; for example.
Abstract:
Embodiments herein relate to a method for forming a bulk solidifying amorphous alloy sheets have different surface finish including a “fire” polish surface like that of a float glass. In one embodiment, a first molten metal alloy is poured on a second molten metal of higher density in a float chamber to form a sheet of the first molten that floats on the second molten metal and cooled to form a bulk solidifying amorphous alloy sheet. In another embodiment, a molten metal is poured on a conveyor conveying the sheet of the first molten metal on a conveyor and cooled to form a bulk solidifying amorphous alloy sheet. The cooling rate such that a time-temperature profile during the cooling does not traverse through a region bounding a crystalline region of the metal alloy in a time-temperature-transformation (TTT) diagram.