Abstract:
A method in a storage device includes receiving from a host storage commands for execution in a non-volatile memory of the storage device. At least a subset of the storage commands are to be executed in accordance with an order-of-arrival in which the storage commands in the subset are received. The received storage commands are executed in the non-volatile memory in accordance with internal scheduling criteria of the storage device, which permit deviations from the order-of-arrival, but such that execution of the storage commands in the subset reflects the order-of-arrival to the host.
Abstract:
A method includes storing data in a non-volatile memory that includes multiple memory blocks. At least first and second regions are defined in the non-volatile memory. A definition is made of a first over-provisioning ratio between a first logical address space and a first physical memory space of the first region, and a second over-provisioning ratio, different from the first over-provisioning ratio, between a second logical address space and a second physical memory space of the second region. Portions of the data are compacted, individually within each of the first and second regions and independently of the other region, by copying the portions from one or more source memory blocks to one or more destination memory blocks using the first and second over-provisioning ratios, respectively.
Abstract:
A method for data storage includes, in a host system that operates alternately in a normal state and a hibernation state, reserving a hibernation storage space in a non-volatile storage device for storage of hibernation-related information in preparation for entering the hibernation state. While the host system is operating in the normal state, a storage task other than storage of the hibernation-related information is performed using at least a portion of the reserved hibernation storage space.
Abstract:
A method includes, in a memory controller that controls a memory, evaluating an available memory space remaining in the memory to write data. A redundant storage configuration is selected in the memory controller depending on the available memory space. Redundancy information is calculated over the data using the selected redundant storage configuration. The data and the redundancy information are written to the available memory space in the memory.
Abstract:
A method for data storage in a memory including multiple memory cells arranged in blocks, includes storing first and second pages in respective first and second groups of the memory cells within a given block of the memory. A pattern of respective positions of one or more defective memory cells is identified in the first group. The second page is recovered by applying the pattern identified in the first group to the second group of the memory cells.
Abstract:
A method includes, in a memory controller that controls a memory, evaluating an available memory space remaining in the memory to write data. A redundant storage configuration is selected in the memory controller depending on the available memory space. Redundancy information is calculated over the data using the selected redundant storage configuration. The data and the redundancy information are written to the available memory space in the memory.
Abstract:
A method for data storage includes, in a host system that operates alternately in a normal state and a hibernation state, reserving a hibernation storage space in a non-volatile storage device for storage of hibernation-related information in preparation for entering the hibernation state. While the host system is operating in the normal state, a storage task other than storage of the hibernation-related information is performed using at least a portion of the reserved hibernation storage space.
Abstract:
A method in a storage device includes receiving from a host storage commands for execution in a non-volatile memory of the storage device. At least a subset of the storage commands are to be executed in accordance with an order-of-arrival in which the storage commands in the subset are received. The received storage commands are executed in the non-volatile memory in accordance with internal scheduling criteria of the storage device, which permit deviations from the order-of-arrival, but such that execution of the storage commands in the subset reflects the order-of-arrival to the host.
Abstract:
A method includes storing data in a non-volatile memory that includes multiple memory blocks. At least first and second regions are defined in the non-volatile memory. A definition is made of a first over-provisioning ratio between a first logical address space and a first physical memory space of the first region, and a second over-provisioning ratio, different from the first over-provisioning ratio, between a second logical address space and a second physical memory space of the second region. Portions of the data are compacted, individually within each of the first and second regions and independently of the other region, by copying the portions from one or more source memory blocks to one or more destination memory blocks using the first and second over-provisioning ratios, respectively.
Abstract:
A method for operating a memory (28) that includes a plurality of analog memory cells (32) includes storing data in the memory by writing first storage values to the cells. Second storage values are read from the cells, and a Cumulative Distribution Function (CDF) of the second storage values is estimated. The estimated CDF is processed so as to compute one or more thresholds. A memory access operation is performed on the cells using the one or more thresholds.