Abstract:
A portable electronic device is described. This portable electronic device includes an external housing with a cavity defined by an edge. A keyboard, having a front surface and a back surface, is disposed in the cavity with the front surface facing the external housing. Moreover, a tray is disposed over the back surface of the keyboard, and is mechanically coupled to the external housing adjacent to the edge. Furthermore, battery cells are mechanically coupled to an opposite side of the tray from the back surface of the keyboard. The tray may allow the battery cells to be removed from the portable electronic device without damaging the keyboard. In addition, the tray may increase the compression strength and/or the bending strength of the portable electronic device.
Abstract:
An interposer for electrically coupling a battery-management circuit board in a power supply and a motherboard is described. The interposer includes: a substrate having a top surface and a bottom surface; first spring connectors, disposed on the top surface, which electrically couple to the battery-management circuit board; and second spring connectors, disposed on the bottom surface and electrically coupled to the first spring connectors, which electrically couple to the motherboard. Spring connectors in a first subset of the first and second spring connectors that convey power signals have a first vertical height, and spring connectors in a second subset of the first and second spring connectors that convey monitoring signals for the power supply have a second, smaller vertical height. In this way, the first subset is activated before the second subset is activated, thereby ensuring that an electrical path for the power signals is established first.
Abstract:
An aesthetically pleasing small form factor desktop computer is described. The small form factor desktop computer can be formed of a single piece seamless housing that in the described embodiment is machined from a single billet of aluminum. The single piece seamless housing includes an aesthetically pleasing foot support having at least a portion formed of RF transparent material that provides easy user access to selected internal components as well as offers electromagnetic (EM) shielding. This simplicity of design can accrue many advantages to the small form factor desktop computer besides those related to aesthetic look and feel. Fewer components and less time and effort can be required for assembly of the small form factor desktop computer and the absence of seams in the single piece housing can provide good protection against environmental contamination of internal components as well as EM shielding.
Abstract:
The disclosed embodiments relate to a system that facilitates thermal conductance in a system that includes a module comprising a circuit board with integrated circuits, such as a solid-state drive. A thermal-coupling material between one side of the circuit board and an adjacent baseplate is used to increase thermal conduction between the circuit board and the baseplate. Furthermore, the module may include another thermal-coupling material between the baseplate and a housing that at least in part surrounds the circuit board, thereby increasing thermal conduction between the baseplate and the housing. In these ways, the baseplate and/or the housing may be used as a heat-transfer surfaces or heat spreaders that reduce hotspots associated with operation of the integrated circuits.
Abstract:
A portable electronic device is described. This portable electronic device includes an external housing with a cavity defined by an edge. A keyboard, having a front surface and a back surface, is disposed in the cavity with the front surface facing the external housing. Moreover, a tray is disposed over the back surface of the keyboard, and is mechanically coupled to the external housing adjacent to the edge. Furthermore, battery cells are mechanically coupled to an opposite side of the tray from the back surface of the keyboard. The tray may allow the battery cells to be removed from the portable electronic device without damaging the keyboard. In addition, the tray may increase the compression strength and/or the bending strength of the portable electronic device.
Abstract:
An electronic device can include a frame configured to receive and support an electronic component, a shell defining an internal volume sized to encompass the frame and the electronic component, the shell being slidably removable from the frame, the electronic component positioned within the internal volume and including an aperture, and a sealing member including a seal body and a compressible lip extending from the seal body, the sealing member at least partially surrounding the electronic component. The compressible lip is oriented such that the shell compresses the lip in a direction against the seal body at a first position adjacent to the electronic component and in the direction against the seal body at a second position adjacent to the electronic component opposite the first position.
Abstract:
An input mechanism is disclosed. The input mechanism includes a dome support structure defining an opening that extends through the dome support structure, a collapsible dome positioned in the opening and engaged with the dome support structure, and a cover member coupled to the dome support structure and covering the collapsible dome, thereby retaining the collapsible dome within the opening of the dome support structure.
Abstract:
A removable assembly for quickly inserting and removing a mass storage device from a compartment situated on the case of a portable computing device is described. The removable assembly is made of a mass storage device, a bracket which serves as a carrier for the mass storage device, and a metal plate. In some embodiments, the mass storage device is a solid state drive (SSD) card. The bracket is a single-piece plastic structure that is deflected for snap insertion into the compartment and snap removal from the compartment. The metal plate conducts heat from the solid state drive (SSD) card to prevent the SSD from overheating.
Abstract:
The disclosed embodiments relate to a system that facilitates thermal conductance in a system that includes a module comprising a circuit board with integrated circuits, such as a solid-state drive. A thermal-coupling material between one side of the circuit board and an adjacent baseplate is used to increase thermal conduction between the circuit board and the baseplate. Furthermore, the module may include another thermal-coupling material between the baseplate and a housing that at least in part surrounds the circuit board, thereby increasing thermal conduction between the baseplate and the housing. In these ways, the baseplate and/or the housing may be used as a heat-transfer surfaces or heat spreaders that reduce hotspots associated with operation of the integrated circuits.
Abstract:
A removable assembly for quickly inserting and removing a mass storage device from a compartment situated on the case of a portable computing device is described. The removable assembly is made of a mass storage device, a bracket which serves as a carrier for the mass storage device, and a metal plate. The mass storage device can be a solid state drive (SSD) card. The bracket is a single-piece plastic structure that can be deflected for snap insertion into the compartment and snap removal from the compartment. The metal plate conducts heat from the solid state drive (SSD) card to prevent it from overheating.