Abstract:
Apparatus for processing a substrate are provided herein. In some embodiments a showerhead assembly includes a gas distribution plate having a plurality of apertures; a holder having a wall, an radially inwardly extending flange extending from a lower portion of the wall and coupled to the gas distribution plate, and a radially outwardly extending flange extending from an upper portion of the wall, wherein the wall has a thickness between about 0.015 inches and about 0.2 inches; and a heating apparatus disposed above and spaced apart from the gas distribution plate, wherein the heating apparatus includes a heater configured to heat the gas distribution plate.
Abstract:
Embodiments of substrate supports are provided herein. In some embodiments, a substrate support may include a first plate for supporting a substrate, the first plate having a plurality of purge gas channels on its backside; a second plate disposed beneath and supporting the first plate; and an edge ring surrounding the first plate and disposed above the second plate, wherein the plurality of purge gas channels extend from a single inlet in a central portion to a plurality of outlets at a periphery of the first plate, and wherein the plurality of purge gas channels have a substantially equal flow conductance.
Abstract:
Embodiments of methods and apparatus for improving gas flow in a substrate processing chamber are provided herein. In some embodiments, a substrate processing chamber includes: a chamber body and a chamber lid defining an interior volume; a substrate support disposed within the interior volume and having a support surface to support a substrate; a gas passageway disposed in the lid opposite the substrate support to supply a gas mixture to the interior volume, the gas passageway including a first portion and a second portion; a first gas inlet disposed in the first portion to supply a first gas to the first portion of the gas passageway; and a second gas inlet disposed in the second portion to supply a second gas to the second portion.
Abstract:
Embodiments of lift pin assemblies and substrate supports having such lift pin assemblies are provided herein. In some embodiments, a lift pin assembly includes a body with a first end including a flange and an opposing second end; a bore through the body from the first end to the second end; a profile on an outer surface proximate a second end; and a collar, wherein the profile is configured to removably lock the collar onto the second end.
Abstract:
Embodiments of heated substrate supports are provided herein, In some embodiments, a heated substrate support includes a support plate having a top surface and an opposite bottom surface; and a first heater disposed within the support plate, wherein the first heater is disposed beneath a mid-plane of the support plate, and wherein the first heater is disposed proximate a central zone of the support plate.
Abstract:
Embodiments of a blocker plate for use in a substrate process chamber are disclosed herein. In some embodiments, a blocker plate for use in a substrate processing chamber configured to process substrates having a given diameter includes: an annular rim; a central plate disposed within the annular rim; and a plurality of spokes coupling the central plate to the annular rim.
Abstract:
Embodiments of a blocker plate for use in a substrate process chamber are disclosed herein. In some embodiments, a blocker plate for use in a substrate processing chamber configured to process substrates having a given diameter includes: an annular rim; a central plate disposed within the annular rim; and a plurality of spokes coupling the central plate to the annular rim.
Abstract:
Methods and apparatus for cleaning an atomic layer deposition chamber are provided herein. In some embodiments, a chamber lid assembly includes: a housing enclosing a central channel that extends along a central axis and has an upper portion and a lower portion; a lid plate coupled to the housing and having a contoured bottom surface that extends downwardly and outwardly from a central opening coupled to the lower portion of the central channel to a peripheral portion of the lid plate; a first heating element to heat the central channel; a second heating element to heat the bottom surface of the lid plate; a remote plasma source fluidly coupled to the central channel; and an isolation collar coupled between the remote plasma source and the housing, wherein the isolation collar has an inner channel extending through the isolation collar to fluidly couple the remote plasma source and the central channel.
Abstract:
Embodiments of substrate supports and sealing rings for use in a substrate support are provided herein. In some embodiments, a substrate support structure includes an arcuate sealing piece having a first side including a generally planar support surface; a first arcuate portion; a second arcuate portion disposed radially inward of the first arcuate portion; a first end portion comprising a first arcuate extension extending from the first arcuate portion; and a second end portion comprising a second arcuate extension extending from the second arcuate portion.