摘要:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
摘要:
An electronic device, including a substrate, a plurality of first semiconductor islands on the substrate, a plurality of second semiconductor islands on the substrate, a first dielectric film on the first subset of the semiconductor islands, second dielectric film on the second semiconductor islands, and a metal layer in electrical contact with the first and second semiconductor islands. The first semiconductor islands and the first dielectric film contain a first diffusible dopant, and the second semiconductor islands and the second dielectric layer film contain a second diffusible dopant different from the first diffusible dopant. The present electronic device can be manufactured using printing technologies, thereby enabling high-throughput, low-cost manufacturing of electrical circuits on a wide variety of substrates.
摘要:
Methods for forming doped silane and/or semiconductor thin films, doped liquid phase silane compositions useful in such methods, and doped semiconductor thin films and structures. The composition is generally liquid at ambient temperatures and includes a Group IVA atom source and a dopant source. By irradiating a doped liquid silane during at least part of its deposition, a thin, substantially uniform doped oligomerized/polymerized silane film may be formed on a substrate. Such irradiation is believed to convert the doped silane film into a relatively high-molecular weight species with relatively high viscosity and relatively low volatility, typically by cross-linking, isomerization, oligomerization and/or polymerization. A film formed by the irradiation of doped liquid silanes can later be converted (generally by heating and annealing/recrystallization) into a doped, hydrogenated, amorphous silicon film or a doped, at least partially polycrystalline silicon film suitable for electronic devices. Thus, the present invention enables use of high throughput, low cost equipment and techniques for making doped semiconductor films of commercial quality and quantity from doped “liquid silicon.”
摘要:
A self-aligned top-gate thin film transistor (TFT) and a method of forming such a thin film transistor, by forming a semiconductor thin film layer; printing a doped glass pattern thereon, a gap in the doped glass pattern defining a channel region of the TFT; forming a gate electrode on or over the channel region, the gate electrode comprising a gate dielectric film and a gate conductor thereon; and diffusing a dopant from the doped glass pattern into the semiconductor thin film layer.
摘要:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
摘要:
An electronic device, including a substrate, a plurality of first semiconductor islands on the substrate, a plurality of second semiconductor islands on the substrate, a first dielectric film on the first subset of the semiconductor islands, second dielectric film on the second semiconductor islands, and a metal layer in electrical contact with the first and second semiconductor islands. The first semiconductor islands and the first dielectric film contain a first diffusible dopant, and the second semiconductor islands and the second dielectric layer film contain a second diffusible dopant different from the first diffusible dopant. The present electronic device can be manufactured using printing technologies, thereby enabling high-throughput, low-cost manufacturing of electrical circuits on a wide variety of substrates.
摘要:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
摘要:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
摘要:
A method for making an electronic device, such as a MOS transistor, including the steps of forming a plurality of semiconductor islands on an electrically functional substrate, printing a first dielectric layer on or over a first subset of the semiconductor islands and optionally a second dielectric layer on or over a second subset of the semiconductor islands, and annealing. The first dielectric layer contains a first dopant, and the (optional) second dielectric layer contains a second dopant different from the first dopant. The dielectric layer(s), semiconductor islands and substrate are annealed sufficiently to diffuse the first dopant into the first subset of semiconductor islands and, when present, the second dopant into the second subset of semiconductor islands.
摘要:
Compositions, inks and methods for forming a patterned silicon-containing film and patterned structures including such a film. The composition generally includes (a) passivated semiconductor nanoparticles and (b) first and second cyclic Group IVA compounds in which the cyclic species predominantly contains Si and/or Ge atoms. The ink generally includes the composition and a solvent in which the composition is soluble. The method generally includes the steps of (1) printing the composition or ink on a substrate to form a pattern, and (2) curing the patterned composition or ink. In an alternative embodiment, the method includes the steps of (i) curing either a semiconductor nanoparticle composition or at least one cyclic Group IVA compound to form a thin film, (ii) coating the thin film with the other, and (iii) curing the coated thin film to form a semiconducting thin film. The semiconducting thin film includes a sintered mixture of semiconductor nanoparticles in hydrogenated, at least partially amorphous silicon and/or germanium. The thin film exhibits improved conductivity, density, adhesion and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without either the semiconductor nanoparticles or the hydrogenated Group IVA element polymer. The present invention advantageously provides semiconducting thin film structures having qualities suitable for use in electronics applications, such as display devices or RF ID tags, while enabling high-throughput printing processes that form such thin films in seconds or minutes, rather than hours or days as with conventional photolithographic processes.