摘要:
A electrolytic cell for efficiently producing caustic from sodium salts via use of a thin membrane of ceramic or ceramic composite electrolyte is disclosed. Ceramic electrolytes having a very mobile sodium ion such as NASICON are very effective in cells producing concentrated caustic from sodium salts of strong acids.
摘要:
A sodium ion sensor having a composite electrolyte is disclosed. The sodium ion sensor has an outer electrolyte which is insensitive to water and has a high transport activity for sodium ions and an inner electrolyte which is a thin membrane having a very high sodium ion selectivity. The sodium ion sensor having such an electrolyte is sensitive only to the transport of sodium ions and may be operated in aqueous solutions without buffering and in the presence of other alkali ions and alkaline earth metal ions. Sensors of this type operate in EMF mode to give a substantially instantaneous determination of the sodium ion concentration of the aqueous medium being analyzed. The sensor may be used as an on-line sensor directly exposed to the medium to be analyzed.
摘要:
Composite ceramic mixed ionic and electronic conducting materials having high ambipolar activity which can be fabricated into thin membranes for high efficiency oxygen separation from air at intermediate temperatures. The mixed conducting materials have composite non-homogeneous microstructures of a separate predominantly oxygen ion conductive phase and a predominantly electronic conductive phase. Preferred predominantly oxygen ion conducting phases include bismuth, cerium and zirconium oxide based materials and predominantly electronic conducting phases include at least one metal electronic conductor material.
摘要:
A composite ceramic mixed oxygen ion and electronic conducting materials having high ambipolar activity which can be fabricated into thin membranes for high efficiency oxygen separation from air at intermediate temperatures. The mixed conducting materials have composite non-homogeneous microstructures of a separate predominantly oxygen ion conductive phase and a predominantly electronic conductive phase. Predominantly oxygen ion conducting phases include bismuth, cerium and thorium oxide based materials and predominantly electronic conducting phases include at least one metal, metal oxide of at least one metal, and at least one perovskite-type electronic conductor material.
摘要:
Mixed oxygen ion and electronic conducting bismuth oxide based ceramic materials having high ambipolar activity which can be fabricated into thin membranes for high efficiency oxygen separation from air at intermediate temperatures. The ceramic materials may be homogeneous microstructures in the form of solid solutions or compounds or may be composite non-homogeneous microstructures of a separate substantially continuous oxygen ion conductive phase and a substantially continuous electronic conductive phase.
摘要:
A delivery apparatus includes a volatile agent source, a controller, and an emanator material. The volatile agent source stores a volume of a volatile agent such as a fragrance. The volatile agent source includes an outlet for delivery of the volatile agent from the volatile agent source. The controller controls a delivery rate of the volatile agent from the volatile agent source. The emanator material is disposed at approximately the outlet of the volatile agent source. The emanator material absorbs at least a portion of the volatile agent and maintains the volatile agent until the volatile agent evaporates into an ambient environment.
摘要:
A nickel-metal hydride (hydrogen) hybrid storage battery comprising a positive electrode containing nickel hydroxide, a combination negative electrode containing a hydrogen storage alloy electrode and a reversible hydrogen electrode, an alkaline electrolyte, and an alkali conducting separator disposed between the positive electrode and the negative electrode. The alkali conducting separator may be a substantially non-porous ion conducting material wherein the alkali conducted is Na, K, or Li. A method of charging and discharging such a hybrid battery is also disclosed.
摘要:
A process is provided for synthesizing synthesis gas from carbon dioxide obtained from atmospheric air or other available carbon dioxide source and water using a sodium-conducting electrochemical cell. Synthesis gas is also produced by the coelectrolysis of carbon dioxide and steam in a solid oxide fuel cell or solid oxide electrolytic cell. The synthesis gas produced may then be further processed and eventually converted into a liquid fuel suitable for transportation or other applications.
摘要:
A method for delivering a beneficial agent is disclosed in one embodiment of the invention as including a water collection chamber. A water-transporting membrane is provided to communicate with the water collection chamber. An extraction chamber receives water through the water-transporting membrane, expanding the extraction chamber. A dispensing chamber, containing a beneficial agent, is configured to contract upon expanding the extraction chamber. This causes the dispensing chamber to expel the beneficial agent through a subterranean delivery channel, such as a rigid hollow spike. In certain embodiments, a rate adjustment mechanism may control the rate that water is received through the water-transporting membrane, thereby controlling the rate the beneficial agent is expelled. The water-transporting membrane has features that repel osmagent from passing through to the water collection chamber. The method features steady rate performance without refreshing the water chamber and low temperature sensitivity.
摘要:
A method for wound-healing is disclosed where the method comprises providing a housing forming a cavity, the cavity comprising at least one opening configured to encompass at least a portion of a wound region of a patient. The method includes sealing a perimeter of the at least one opening to a surface of the patient proximate the wound region and absorbing a wound fluid in the cavity. A chamber is provided in communication with the cavity, and would fluid is electrochemically removed from the cavity into the chamber.