Abstract:
The present invention relates to a hybrid material comprising a matrix of polyurethane and foamed particles of thermoplastic polyurethane comprised therein and also a process for producing such hybrid materials and the use of these hybrid materials as bicycle saddles, upholstery and shoe soles.
Abstract:
Foam beads based on thermoplastic elastomers and having a coating comprising at least one electrically conductive substance, processes for producing same by coating the foam beads with an emulsion of a conductive substance in a plasticizer, and also processes for producing bead foams by joining the foam beads together thermally via high-frequency electromagnetic radiation.
Abstract:
A method for producing bead foams from foam beads based on thermoplastic elastomers, especially thermoplastic polyurethane, comprises foam beads being wetted with a polar liquid and joined together thermally in a mold via high-frequency electromagnetic radiation, especially microwave radiation, and also the bead foams obtainable therefrom.
Abstract:
Disclosed herein is a process for producing polyurethanes including mixing (a) aromatic polyisocyanate with (b) polymeric compounds having isocyanate-reactive groups, (c) optionally chain extender and/or crosslinking agent, (d) catalyst, (e) 0.1% to 5% by weight, based on the total weight of the components (a) to (f), of at least one cyclic urea structure of general formula 1
where —X— represents a substituted or unsubstituted, 3-membered radical and R represents a radical (f) optionally blowing agent and (g) optionally additives to afford a reaction mixture and reacting the reaction mixture to afford the polyurethane. Further disclosed herein are a polyurethane obtainable by such a process and a method of using such a polyurethane foam for producing cushions, seat pads and mattresses.
Abstract:
The present invention relates to a method of producing polyurethane or polyisocyanurate foams which comprises the step of reacting a composition (Z1), comprising a composition (ZP) at least comprising a polyol and a catalyst that catalyzes the formation of a urethane, urea or isocyanurate bond, and a surfactant TD having an HLB value below 10 and no silicon atom, wherein the sum total of surfactants TD in the composition comprises from 0.05 to 10 parts by mass per 100 parts by mass of the composition (ZP), with at least one polyisocyanate, wherein the step of reacting takes place in the presence of a nucleating agent selected from the group consisting of perfluorinated hydrocarbons, ethers having at least one perfluorinated hydrocarbyl moiety and ketones having at least one perfluorinated hydrocarbyl moiety, and of a blowing agent, wherein the nucleating agent differs from the blowing agent, and wherein the nucleating agent and the blowing agent are mixed to obtain a composition (Z2) and said composition (Z2) is added to said composition (Z1) before the step of reacting with the at least one polyisocyanate. The present invention further relates to a stabilized composition (ZS) and also to a kit for preparing a stabilized composition (ZS) for producing a polyurethane or polyisocyanurate foam, and to methods of producing polyurethane or polyisocyanurate foams by reacting a stabilized composition of the present invention and/or a stabilized composition obtained or obtainable according to a method of the invention.
Abstract:
Described herein is a method for the preparation of a rigid polyisocyanate based foam, including mixing (a) polyisocyanate, (b) at least one compound having at least two hydrogen atoms reactive towards isocyanates, (c) optionally flame retardant, (d) blowing agent, (e) catalyst and (f) optionally further additives, to form a reaction mixture and reacting the reaction mixture to obtain the polyurethane based rigid foam where the compound reactive towards isocyanates (b) includes an aromatic polyetherpolyol (b2) and at least one compound selected from the group consisting of an aromatic polyesterpolyol (b1) and a polyetherpolyol (b3) different from polyether (b2). Also described herein is a rigid polyisocyanate based foam obtained from such a method and a polyol component for the production of a polyisocyanate based foam.
Abstract:
The present invention relates to a composite material which comprises at least one thermoresponsive polymer and at least one inorganic building material. The present invention further relates to a method for producing the composite material and also to the use of the composite material for cooling and for regulating the humidity.
Abstract:
The present invention relates to a process for preparing polyurethanes by mixing a) polyisocyanate, b) a mixture obtainable by introducing an alkali metal or alkaline earth metal salt into a compound comprising urethane groups, c) compounds comprising one or more epoxide groups, and, optionally, d) polyol, e) chain extenders, and f) fillers and further additives to form a reaction mixture and fully reacting the mixture to give the polyurethane, where the amount of alkali metal or alkaline earth metal ions per equivalent urethane groups in the compound (b) is 0.0001 to 3.5. The present invention further relates to a polyurethane obtainable by such a process, and to the use of such a polyurethane for producing bodywork components for vehicles.
Abstract:
The present invention relates to a hybrid material comprising a matrix of polyurethane and foamed particles of thermoplastic polyurethane comprised therein and also a process for producing such hybrid materials and the use of these hybrid materials as bicycle saddles, upholstery and shoe soles.