Method and reagent for constructing nucleic acid double-linker single-strand cyclical library

    公开(公告)号:US10479991B2

    公开(公告)日:2019-11-19

    申请号:US15529881

    申请日:2014-11-26

    Abstract: A method and reagent for constructing a nucleic acid double-linker single-strand cyclic library. The method comprises: breaking a nucleic acid into nucleic acid fragments; connecting a first linker sequence; producing by amplification a first product provided with the first linker sequence at either end, where a U nucleobase site is provided on primer sequences and a nicking enzyme recognition sequence is either provided or not provided on same, and a first affinity tag is provided on one of the primer sequences; using USER enzyme to cleave the first product; cyclizing the cleaved first product; treating the cyclization product with either a phosphatase or a nicking enzyme; using a solid-phase vector for combination with a cyclized molecule; performing a restrictive gap translation reaction; removing by digestion any portion that did not undergo the restrictive gap translation reaction; connecting a second linker sequence; producing by amplification a second product provided with the second linker sequence at either end; denaturing the second product, and cyclizing a single-strand nucleic acid molecule. The method allows an increase in the length of library insert fragments, a simplified library construction process, reduced library construction time, and reduced library construction costs.

    Method and a sequence combination for producing nucleic acid fragments

    公开(公告)号:US10344317B2

    公开(公告)日:2019-07-09

    申请号:US15518760

    申请日:2014-10-13

    Abstract: Disclosed are a nucleic acid fragmentation method and a sequence combination. The method comprises the following steps: subjecting a denatured nucleic acid to annealing and an extension reaction by using a single-stranded 5′-end extension primer, wherein the single-stranded 5′-end extension primer comprises a sequencing platform adaptor sequence of a 5′ end and a connected random sequence, and the random sequence is subjected to annealing on a random site of the denatured nucleic acid; and directionally connecting a double-stranded 3′-end adaptor sequence to the 3′ end of the nucleic acid generated in the extension reaction, and carrying out denaturalization and purification to obtain a fragmented single-stranded nucleic acid with adaptor sequences on two ends.

Patent Agency Ranking