Abstract:
The present disclose provides in some embodiments an array substrate and a method for fabricating the same, and a display device. The array substrate includes a source-drain metal layer formed on a base substrate and including copper, an alloy layer formed on the source-drain metal layer and including copper alloy, non-copper metal in the copper alloy being easier to be oxidized than copper in the copper alloy, a passivation layer formed on the alloy layer, and an oxide layer formed between the alloy layer and the passivation layer.
Abstract:
A thin-film transistor (TFT) and a manufacturing method thereof, an array substrate and a manufacturing method thereof, and a display apparatus are provided. The method for manufacturing the TFT includes: forming a gate electrode, a gate insulating layer, a metal oxide semiconductor active layer, a source electrode and a drain electrode on a substrate; the forming the metal oxide semiconductor active layer includes: forming the metal oxide semiconductor active layer by electrochemical reaction. The method for manufacturing the TFT is applied in the production of the TFT and the array substrate and the display apparatus comprising the TFTs and provides a new method for forming the metal oxide semiconductor active layer.
Abstract:
Embodiments of the present invention provide a thin film transistor, method for fabricating the thin film transistor and display apparatus. The method includes steps of: forming an active layer pattern which has a mobility greater than a predetermined threshold from an active layer material; and performing ion implantation on the active layer pattern. The energy of a compound bond formed from the implanted ions is greater than that of a compound bond formed from ions in the active layer material, thereby reducing the chance of vacancy formation and reducing the carrier concentration. Therefore, the mobility of the active layer surface is reduced, the leakage current is reduced, the threshold voltage is adjusted to shift toward positive direction and performance of the thin film transistor is improved.
Abstract:
A thin film transistor and a manufacturing method thereof, an array substrate and a display device are provided. The method includes forming a gate electrode, a gate insulating layer, a metal oxide semiconductor (MOS) active layer, a source electrode and a drain electrode on a substrate. The MOS active layer includes forming a pattern layer of indium oxide series binary metal oxide including a first pattern directly contacting with the source electrode and the drain electrode. An insulating layer formed over the source electrode and the drain electrode acts as a protection layer, the pattern layer of indium oxide series binary metal oxide is implanted with metal doping ions by using an ion implanting process, and is annealed, so that the indium oxide series binary metal oxide of the third pattern is converted into the indium oxide series multiple metal oxide to form the MOS active layer.
Abstract:
Embodiments of the invention provide an array substrate and a method of manufacturing the same. The method comprises: forming a gate electrode pattern, a gate insulation layer, an active layer pattern and an etching stopping layer on a substrate; forming a photoresist layer on the etching stopping layer; performing a single patterning process on the photoresist layer, such that photoresist in the first region is partially etched off, photoresist in the second region is completely etched off, and photoresist in the third region is completely remained; and performing a single etching process, such that residual photoresist in the first region and a portion of the etching stopping layer in the first region are etched off, and at the same time, a portion of the etching stopping layer and a portion of the gate insulation layer in the second region are etched off.
Abstract:
An embodiment of the present disclosure provides an organic electroluminescent transistor array substrate, including a substrate, and a gate layer, a gate insulating layer, a semiconductor layer, a source layer, a pixel defining layer, an electroluminescent layer and a drain layer formed on the substrate, wherein, the source layer and the drain layer are located in different levels, the source layer includes plural source electrode units corresponding to sub-pixel units respectively, the pixel defining layer includes plural pixel defining units corresponding to the source electrode units respectively, and the respective source electrode units are embedded within the pixel defining units corresponding thereto.
Abstract:
A thin film transistor and a fabrication method thereof, an array substrate and a display device are provided. The thin film transistor includes: an active layer, a source-drain metal layer and a diffusion blocking layer located between the active layer and the source-drain metal layer, wherein, the source-drain metal layer includes a source electrode and a drain electrode; the diffusion blocking layer includes a source blocking part corresponding to a position of the source electrode and a drain blocking part corresponding to a position of the drain electrode; and the diffusion blocking layer is doped with different concentrations of nitrogen from a side close to the source-drain metal layer to a side close to the active layer.
Abstract:
A thin-film transistor (TFT), a manufacturing method thereof, an array substrate and a display device are disclosed. The method for manufacturing the a TFT comprises the step of forming a gate electrode, a gate insulating layer, an active area, a source electrode and a drain electrode on a base substrate. The active area (4) is made of a ZnON material. When the gate insulating layer is formed, a material for forming the gate insulating layer is subjected to control treatment, so that a sub-threshold amplitude of the TFT is less than or equal to 0.5 mV/dec. The manufacturing method reduces the sub-threshold amplitude of the TFT and improves the semiconductor characteristic of the TFT.
Abstract:
A light-emitting diode (LED) display substrate, a method for manufacturing the same, and a display device are provided and involve the display field. The method for manufacturing the LED display substrate comprises: forming a transparent conductive anode (201) on a substrate (200); forming a pixel region defined by a first PDL (202) and a second PDL (203) on the substrate (200) on which the anode (201) is formed, in which the second PDL (203) made of a hydrophobic material is disposed on the first PDL (201) made of a hydrophilic material; filling a luminescent material into the pixel region to form an emission layer (204) with the luminescent material; and forming a conductive cathode (205) on the substrate (200) on which the emission layer (204) is formed. The manufacturing method allows the luminescent materials to be flatly laid on the LED display substrate so as to improve the luminous quality of the LED display substrate.
Abstract:
The application discloses a pixel driving circuit and a fabrication method thereof as well as an array substrate, the pixel driving circuit including a switching and a driving TFT, the method including: on a substrate, fabricating a gate, a gate insulation GI layer, an oxide semiconductor layer, and an etching stop ESL layer simultaneously in turn; depositing simultaneously source/drain metals of the switching TFT and the driving TFT, the drain metal of the switching TFT extending and covering the GI layer on the gate of the driving TFT by etching; depositing a protection layer; etching off the protection layer, the drain metal of the switching TFT and the GI layer at a via hole by using a via hole process, to expose the gate of the driving TFT; depositing an ITO layer connecting the drain of the switching TFT and the gate of the driving TFT at the via hole.