Abstract:
The invention relates to a silyl-containing polymer that is used, together with a tackifying resin to form an adhesive composition capable of storing and delivering drugs to the skin of a user. Typically the composition is formed into a patch which shows excellent adhesion to the skin even when drugs and other additives are dissolved into the composition.
Abstract:
The present invention relates to a self-adhesive article comprising a support layer of foam or similar type and an adhesive layer obtained by cross-linking an adhesive composition. The present invention also relates to a mixture of at least two polymers suitable for use for the manufacture of the self-adhesive article as well as an adhesive composition comprising said mixture of at least two polymers according to the invention.
Abstract:
The present invention relates to a self-adhesive article comprising a support layer of foam or similar type and an adhesive layer obtained by cross-linking an adhesive composition. The present invention also relates to a mixture of at least two polymers suitable for use for the manufacture of the self-adhesive article as well as an adhesive composition comprising said mixture of at least two polymers according to the invention.
Abstract:
The present invention relates to a self-adhesive article comprising a support layer of foam or similar type and an adhesive layer obtained by cross-linking an adhesive composition. The present invention also relates to a mixture of at least two polymers suitable for use for the manufacture of the self-adhesive article as well as an adhesive composition comprising said mixture of at least two polymers according to the invention.
Abstract:
The present invention relates to a self-adhesive article comprising a support layer of foam or similar type and an adhesive layer obtained by cross-linking an adhesive composition. The present invention also relates to a mixture of at least two polymers suitable for use for the manufacture of the self-adhesive article as well as an adhesive composition comprising said mixture of at least two polymers according to the invention.
Abstract:
A self-adhesive article comprises an adhesive layer comprising a crosslinked adhesive composition, which comprises at least one polysilylated polymer having a number-average molar mass (Mn) of at least 20000 g/mol, wherein the at least one polysilylated polymer comprises a polyether and/or polyurethane main chain and at least two hydrolysable silylated end groups, said silylated end groups being attached to the main chain of the polymer by a urethane or ether function (referred to as a connector group); at least one tackifying resin having an average hydroxyl number of less than or equal to 100; and at least one crosslinking catalyst, excluding any monosilylated polymer.
Abstract:
The present invention relates to a heat-crosslinkable adhesive composition comprising: —from 20% to 84% by weight of composition (A); —from 15% to 79% by weight of a compatible tackifying resin (B), —from 0.01% to 5% by weight of a crosslinking catalyst (C). The invention also relates to a self-adhesive item obtained by preheating said composition, coating on a support layer, then crosslinking by heating.
Abstract:
The invention relates to the use of an adhesive composition to provide a bonding in a wet environment. The invention also relates to a method for providing a bonding in a wet environment.
Abstract:
The invention relates to the use of an adhesive composition to provide a bonding in a wet environment. The invention also relates to a method for providing a bonding in a wet environment.
Abstract:
A hot-melt adhesive composition comprises a mixture of silylated polymers, a tackifying resin and a catalyst, in specific contents, having self-adhesive properties after crosslinking to moisture. A self-adhesive article comprises a support layer and at least one self-adhesive layer obtained after crosslinking to the moisture in the adhesive composition according to the invention. The self-adhesive article can be used to bond low-energy substrates, in particular plastic substrates, notably thermoplastic substrates having low surface energy.