摘要:
In a read step or a program (write) verification step of a semiconductor memory device, read voltages different from one another are applied to a pair of word lines respectively disposed on both sides of a selected word line to suppress the enlargement of program distribution.
摘要:
Provided are nonvolatile memory devices and a method of forming the same. A tunnel insulating pattern is provided on a substrate, and a floating gate is provided on the tunnel insulating pattern. A floating gate cap having a charge trap site is provided on the floating gate, and a gate dielectric pattern is provided on the floating gate cap. A control gate is provided on the gate dielectric pattern.
摘要:
A channel pre-charge method of a nonvolatile memory device including a cell string includes pre-charging a channel of the cell string according to a first word line bias condition and pre-charging the channel of the cell string according to a second word line bias condition, different than the first word line bias condition.
摘要:
Provided is a local self-boosting method of a flash memory device including at least one string having memory cells respectively connected to wordlines. The local self-boosting method includes forming a potential well at a channel of the string and forming potential walls at the potential well to be disposed at both sides of a channel of a selected one of the memory cells. The channel of the selected memory cell is locally limited by the potential walls and boosted when a program voltage is applied to the selected memory cell.
摘要:
Provided are nonvolatile memory devices and a method of forming the same. A tunnel insulating pattern is provided on a substrate, and a floating gate is provided on the tunnel insulating pattern. A floating gate cap having a charge trap site is provided on the floating gate, and a gate dielectric pattern is provided on the floating gate cap. A control gate is provided on the gate dielectric pattern.
摘要:
Provided is a local self-boosting method of a flash memory device including at least one string having memory cells respectively connected to wordlines. The local self-boosting method includes forming a potential well at a channel of the string and forming potential walls at the potential well to be disposed at both sides of a channel of a selected one of the memory cells. The channel of the selected memory cell is locally limited by the potential walls and boosted when a program voltage is applied to the selected memory cell.
摘要:
Provided are a non-volatile memory device and a method of forming the same. The non-volatile memory device includes: a tunnel insulation layer on a substrate; a floating gate on the tunnel insulation layer; a blocking insulation layer on the floating gate; a first barrier pattern, between the top of the floating gate and the blocking insulation layer, having a higher conduction band energy level than the floating gate; and a control gate on the blocking insulation layer.
摘要:
In a read step or a program (write) verification step of a semiconductor memory device, read voltages different from one another are applied to a pair of word lines respectively disposed on both sides of a selected word line to suppress the enlargement of program distribution.
摘要:
A channel pre-charge method of a nonvolatile memory device including a cell string includes pre-charging a channel of the cell string according to a first word line bias condition and pre-charging the channel of the cell string according to a second word line bias condition, different than the first word line bias condition.
摘要:
A semiconductor memory device includes a stack of word lines and insulating patterns. Cell pillars extend vertically through the stack of word lines and insulating patterns with memory cells being formed at the junctions of the cell pillars and the word lines. A ratio of the thickness of the word lines to the thickness of immediately neighboring insulating patterns is different at different locations along one or more of the cell pillars. Related methods of manufacturing and systems are also disclosed.