摘要:
Improved Fin Field Effect Transistors (FinFET) are provided, as well as improved techniques for forming fins for a FinFET. A fin for a FinFET is formed by forming a semi-insulating layer on an insulator that gives a sufficiently large conduction band offset (ΔEc) ranging from 0.05-0.6 eV; patterning an epitaxy mask on the semi-insulating layer, wherein the epitaxy mask has a reverse image of a desired pattern of the fin; performing a selective epitaxial growth within the epitaxy mask; and removing the epitaxy mask such that the fin remains on the semi-insulating layer. The semi-insulating layer comprises, for example, a III-V semiconductor material and optionally further comprises a Si δ-doping layer to supply electron carriers to the III-V channel.
摘要:
Improved Fin Field Effect Transistors (FinFET) are provided, as well as improved techniques for forming fins for a FinFET. A fin for a FinFET is formed by forming a semi-insulating layer on an insulator that gives a sufficiently large conduction band offset (ΔEe) ranging from 0.05-0.6 eV; patterning an epitaxy mask on the semi-insulating layer, wherein the epitaxy mask has a reverse image of a desired pattern of the fin; performing a selective epitaxial growth within the epitaxy mask; and removing the epitaxy mask such that the fin remains on the semi-insulating layer. The semi-insulating layer comprises, for example, a III-V semiconductor material and optionally further comprises a Si δ-doping layer to supply electron carriers to the III-V channel.
摘要:
Improved semiconductor substrates are provided that employ a wide bandgap material between the channel and the insulator. A semiconductor substrate comprises a channel layer comprised of a III-V material; an insulator layer; and a wide bandgap material between the channel layer and the insulator layer, wherein a conduction band offset (ΔEc) between the channel layer and the wide bandgap material is between 0.05 eV and 0.8 eV. The channel layer can be comprised of, for example, In1-xGaxAs or In1-xGaxSb, with x varying from 0 to 1. The wide bandgap material can be comprised of, for example, In1-yAlyAs, In1-yAlyP, Al1-yGayAs or In1-yGayP, with y varying from 0 to 1.
摘要:
Photovoltaic devices such as solar cells having one or more field-effect hole or electron inversion/accumulation layers as contact regions are configured such that the electric field required for charge inversion and/or accumulation is provided by the output voltage of the photovoltaic device or that of an integrated solar cell unit. In some embodiments, a power source may be connected between a gate electrode and a contact region on the opposite side of photovoltaic device. In other embodiments, the photovoltaic device or integrated unit is self-powering.
摘要:
Photovoltaic structures are provided with field-effect inversion/accumulation layers as emitter layers induced by work-function differences between gate conductor layers and substrates thereof. Localized contact regions are in electrical communication with the gate conductors of such structures for repelling minority carriers. Such localized contact regions may include doped crystalline or polycrystalline silicon regions between the gate conductor and silicon absorption layers. Fabrication of the structures can be conducted without alignment between metal contacts and the localized contact regions or high temperature processing.
摘要:
A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility.
摘要:
A photoreceptor includes a multilayer blocking structure to reduce dark discharge of the surface voltage of the photoreceptor resulting from electron injection from an electrically conductive substrate. The multilayer blocking structure includes wide band gap semiconductor layers in alternating sequence with one or more narrow band gap blocking layers. A fabrication method of the photoreceptor includes transfer-doping of the narrow band gap blocking layers, which are deposited in alternating sequence with wide band gap semiconductor layers to form a blocking structure. Suppression of hole or electron injection can be obtained using the method.
摘要:
A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility.
摘要:
A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility.
摘要:
A method of forming an active matrix, light emitting diode (LED) array includes removing, from a base substrate, a layer of inorganic LED material originally grown thereupon; and bonding the removed layer of inorganic LED material to an active matrix, thin film transistor (TFT) backplane array.