摘要:
In a particular embodiment, a method includes receiving a testing activation signal at a controller coupled to a semiconductor device. The method further includes biasing a well of at least one transistor of the semiconductor device in response to the received testing activation signal. The bias is provided by a biasing circuit that is responsive to the controller. While the well is biased, a test of the semiconductor device is performed to generate testing data.
摘要:
Methods, apparatuses, and computer-readable storage media are disclosed for reducing power by reducing hardware-thread toggling in a multi-threaded processor. In a particular embodiment, a method allocates software threads to hardware threads. A number of software threads to be allocated is identified. It is determined when the number of software threads is less than a number of hardware threads. When the number of software threads is less than the number of hardware threads, at least two of the software threads are allocated to non-sequential hardware threads. A clock signal to be applied to the hardware threads is adjusted responsive to the non-sequential hardware threads allocated.
摘要:
In a particular embodiment, a method includes receiving a testing activation signal at a controller coupled to a semiconductor device. The method further includes biasing a well of at least one transistor of the semiconductor device in response to the received testing activation signal. The bias is provided by a biasing circuit that is responsive to the controller. While the well is biased, a test of the semiconductor device is performed to generate testing data.
摘要:
Methods, apparatuses, and computer-readable storage media are disclosed for reducing power by reducing hardware-thread toggling in a multi-threaded processor. In a particular embodiment, a method allocates software threads to hardware threads. A number of software threads to be allocated is identified. It is determined when the number of software threads is less than a number of hardware threads. When the number of software threads is less than the number of hardware threads, at least two of the software threads are allocated to non-sequential hardware threads. A clock signal to be applied to the hardware threads is adjusted responsive to the non-sequential hardware threads allocated.
摘要:
A system and method to manage leakage of a complementary metal-oxide-semiconductor (CMOS) read transistor in a memory cell. In a particular embodiment, a memory cell is disclosed that includes a storage element and a complementary metal-oxide-semiconductor (CMOS) read transistor. The CMOS read transistor includes a first terminal coupled to a read word line, a second terminal coupled to a read bit line, and a third terminal coupled to the storage element. During a non-read operating time, the read word line and the read bit line are both maintained at substantially the same voltage level. During a read operation, the read word line is maintained at a particular voltage level until after a voltage representing data stored at the storage element is sensed by the CMOS read transistor.
摘要:
A system and method to manage leakage of a complementary metal-oxide-semiconductor (CMOS) read transistor in a memory cell. In a particular embodiment, a memory cell is disclosed that includes a storage element and a complementary metal-oxide-semiconductor (CMOS) read transistor. The CMOS read transistor includes a first terminal coupled to a read word line, a second terminal coupled to a read bit line, and a third terminal coupled to the storage element. During a non-read operating time, the read word line and the read bit line are both maintained at substantially the same voltage level. During a read operation, the read word line is maintained at a particular voltage level until after a voltage representing data stored at the storage element is sensed by the CMOS read transistor.
摘要:
A device includes a plurality of driver circuits coupled to a plurality of bus lines. A first driver circuit of the plurality of driver circuits is coupled to a first bus line of the plurality of bus lines. The first driver circuit includes one of a skewed inverter, a level shifter, a latch, and a sense amplifier configured to produce an output signal that transitions after a first delay in response to a first digital value transition of an input signal from high to low and transitions after a second delay in response to a second digital value transition of the input signal from low to high. The first delay is different from the second delay by an amount sufficient to reduce power related to transmission of signals over the first bus line and over a second bus line in close physical proximity to the first bus line.