摘要:
A wet etchant solution composition and method for etching oxides of hafnium and zirconium including at least one solvent present at greater than about 50 weight percent with respect to an arbitrary volume of the wet etchant solution; at least one chelating agent present at about 0.1 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution; and, at least one halogen containing acid present from about 0.0001 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution.
摘要:
A wet etchant solution composition and method for etching oxides of hafnium and zirconium including at least one solvent present at greater than about 50 weight percent with respect to an arbitrary volume of the wet etchant solution; at least one chelating agent present at about 0.1 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution; and, at least one halogen containing acid present from about 0.0001 weight percent to about 10 weight percent with respect to an arbitrary volume of the wet etchant solution.
摘要:
A method for removing organic material from an opening in a low k dielectric layer and above a metal layer on a substrate is disclosed. An ozone water solution comprised of one or more additives such as hydroxylamine or an ammonium salt is applied as a spray or by immersion. A chelating agent may be added to protect the metal layer from oxidation. A diketone may be added to the ozone water solution or applied in a gas or liquid phase in a subsequent step to remove any metal oxide that forms during the ozone treatment. A supercritical fluid mixture that includes CO2 and ozone can be used to remove organic residues that are not easily stripped by one of the aforementioned liquid solutions. The removal method prevents changes in the dielectric constant and refractive index of the low k dielectric layer and cleanly removes residues which improve device performance.
摘要:
A method for removing organic material from an opening in a low k dielectric layer and above a metal layer on a substrate is disclosed. An ozone water solution comprised of one or more additives such as hydroxylamine or an ammonium salt is applied as a spray or by immersion. A chelating agent may be added to protect the metal layer from oxidation. A diketone may be added to the ozone water solution or applied in a gas or liquid phase in a subsequent step to remove any metal oxide that forms during the ozone treatment. A supercritical fluid mixture that includes CO2 and ozone can be used to remove organic residues that are not easily stripped by one of the aforementioned liquid solutions. The removal method prevents changes in the dielectric constant and refractive index of the low k dielectric layer and cleanly removes residues which improve device performance.
摘要:
Methods and structures for critical dimension or profile measurement are disclosed. The method provides a substrate having periodic openings therein. Material layers are formed in the openings, substantially planarizing a surface of the substrate. A scattering method is applied to the substrate with the material layers for critical dimension (CD) or profile measurement.
摘要:
A method and system for determining the dielectric constant of a low-k dielectric film on a production substrate include measuring the electronic component of the dielectric constant using an ellipsometer, measuring the ionic component of the dielectric constant using an IR spectrometer, measuring the overall dielectric constant using a microwave spectrometer and deriving the dipolar component of the dielectric constant. The measurements and determination are non-contact and may be carried out on a production device that is further processed following the measurements.
摘要:
A method and system for determining the dielectric constant of a low-k dielectric film on a production substrate include measuring the electronic component of the dielectric constant using an ellipsometer, measuring the ionic component of the dielectric constant using an IR spectrometer, measuring the overall dielectric constant using a microwave spectrometer and deriving the dipolar component of the dielectric constant. The measurements and determination are non-contact and may be carried out on a production device that is further processed following the measurements.
摘要:
Methods and structures for critical dimension or profile measurement are disclosed. The method provides a substrate having periodic openings therein. Material layers are formed in the openings, substantially planarizing a surface of the substrate. A scattering method is applied to the substrate with the material layers for critical dimension (CD) or profile measurement.
摘要:
A method of patterning a layer of high-k dielectric material is provided, which may be used in the fabrication of a semiconductor device. A first etch is performed on the high-k dielectric layer. A portion of the high-k dielectric layer being etched with the first etch remains after the first etch. A second etch of the high-k dielectric layer is performed to remove the remaining portion of the high-k dielectric layer. The second etch differs from the first etch. Preferably, the first etch is a dry etch process, and the second etch is a wet etch process. This method further includes a process of plasma ashing the remaining portion of the high-k dielectric layer after the first etch and before the second etch.
摘要:
A process for forming a composite insulator spacer on the sides of a MOSFET gate structure, has been developed. The process features formation of additional insulator spacer shapes on top portions of sides of a gate structure in which an initial insulator spacer had been removed during an over etch cycle used for definition of the initial insulator spacer. The re-establishment of insulator spacer shapes provides a composite insulator spacer offering reduced risk of gate to substrate leakage or shorts, that can occur during a subsequent salicide procedure from the presence of metal silicide stringers or ribbons formed on, and residing on the composite insulator spacer.