Abstract:
An array substrate, a manufacturing method thereof and a display device are disclosed. The array substrate comprises: a base substrate (1), thin-film transistors (TFTs), an isolation layer (10) and an organic resin layer (8) formed on the base substrate (1), and a common electrode layer (12) formed on the organic resin layer (8). The isolation layer (10) covers source electrodes (6) and drain electrodes (7) of the TFTs; the organic resin layer (8) covers the isolation layer (10) and is provided with first through holes (9) corresponding to the drain electrodes (7) of the TFTs; the isolation layer (10) is provided with second through holes (11) communicated with the first through holes (9) to expose partial drain electrodes (7); and the dimension of the second through holes (11) is greater than that of the first through holes (9). The array substrate, the manufacturing method thereof and the display device resolve the problem of forming dark dots, ensure the product quality, reduce the waste of production materials, and reduce the production cost.
Abstract:
An oxide semiconductor thin film transistor, a manufacturing method and a display device thereof are disclosed. An oxide semiconductor thin film transistor comprises a gate insulating layer (22), an oxide semiconductor layer (24) and a blocking layer (25), wherein a first transition layer (23) is formed between the gate insulating layer (22) and the oxide semiconductor layer (24), the oxygen content of the first transition layer (23) is higher than the oxygen content of the oxide semiconductor layer (24). The oxide semiconductor thin film transistor enhances the interface characteristic and the lattice matching between the oxide semiconductor layer (24) and the blocking layer (25) to improve the stability of the thin film transistor better.
Abstract:
An array substrate, a manufacturing method thereof, and a display device are provided. The array substrate includes a display area and a non-display area. The non-display area includes at least one light sensor each including a light blocking layer on a substrate and for blocking light emitted from a backlight source; an insulating layer on the light blocking layer; a amorphous silicon layer on the insulating layer at a location corresponding to the light blocking layer and for sensing external light; an input electrode and an output electrode on the amorphous silicon layer and not contacting each other. The input electrode and the output electrode both contact the amorphous silicon layer, a part of the amorphous silicon layer between the input electrode and the output electrode forms a conductive channel. The output electrode is connected with a photoelectric detection circuit for inputting drain current generated by the conductive channel into the photoelectric detection circuit.
Abstract:
The invention relates to the field of display technologies, and discloses a method for producing a via, a method for producing an array substrate, an array substrate and a display device to prevent a chamfer from being formed in producing the via, to promote the product quality and improve the display effect of the display device. The method for producing a via comprises: employing a first etching process to partially etch a top film layer in an area that needs to form a via above an electrode, wherein the vertical etching amount achieved by employing the first etching process is less than the thickness of the top film layer; and employing a second etching process for which the vertical etching rate is larger than the lateral etching rate to etch the remaining part in the area that needs to form a via, until the electrode is exposed.
Abstract:
Embodiments of the disclosure provide a signal line fabrication method, an array substrate fabrication method, an array substrate and a display device. The signal line fabrication method includes: sequentially forming a material layer for forming the signal line, a material layer for forming a first barrier layer and a material layer for forming a second barrier layer; forming the first barrier layer and the second barrier layer by a patterning process; and forming the signal line by a patterning process.
Abstract:
A thin film transistor (TFT), a method for fabricating the same, an array substrate and a display device are provided. The TFT includes a source electrode and a drain electrode, a semiconductor active layer, a gate insulating layer and a gate electrode. The TFT further includes a light-shielding layer between the source electrode and the drain electrode. The light-shielding layer separates the source electrode and the drain electrode, and the light-shielding layer is disposed on a light incident side of the semiconductor active layer and is used to prevent the incident light from irradiating on the semiconductor active layer.
Abstract:
Embodiments of the present invention disclose a sensor and a method for manufacturing the same, the sensor comprising a plurality of sensing units arranged in array, each of which comprises a thin film transistor device and a photodiode sensor device and the photodiode sensor device comprising: a receiving electrode connected with a drain of the thin film transistor device, a photodiode located on the receiving electrode and covering the thin film transistor device, a transparent electrode on the photodiode and a biasing line connected with the transparent electrode.
Abstract:
Embodiments of the disclosure provide a signal line fabrication method, an array substrate fabrication method, an array substrate and a display device. The signal line fabrication method includes: sequentially forming a material layer for forming the signal line, a material layer for forming a first barrier layer and a material layer for forming a second barrier layer; forming the first barrier layer and the second barrier layer by a patterning process; and forming the signal line by a patterning process.
Abstract:
A thin film transistor, a manufacturing method thereof and an array substrate are provided. The thin film transistor includes: a gate electrode (102) formed on a substrate (101), a gate insulating layer (103) formed on the gate electrode (102) and covering at least a part of the substrate (101), and a semiconductor layer (105′), a source electrode (107a) and a drain electrode (107b) which are formed on the gate insulating layer (103). The material of the semiconductor layer (105′) is an oxide semiconductor; and the material of the source electrode (107a) and drain electrode (107b) is the oxide semiconductor which is doped. The source electrode (107a), the drain electrode (107b) and the semiconductor layer (105′) are disposed in the same layer.
Abstract:
A thin film transistor (TFT), a method for fabricating the same, an array substrate and a display device are provided. The TFT includes a source electrode and a drain electrode, a semiconductor active layer, a gate insulating layer and a gate electrode. The TFT further includes a light-shielding layer between the source electrode and the drain electrode. The light-shielding layer separates the source electrode and the drain electrode, and the light-shielding layer is disposed on a light incident side of the semiconductor active layer and is used to prevent the incident light from irradiating on the semiconductor active layer.