摘要:
A stacked microelectronic assembly is fabricated from a structure which includes a plurality of first microelectronic elements having front faces bonded to a carrier. Each first microelectronic element may have a first edge and a plurality of first traces extending along the front face towards the first edge. After exposing at least a portion of the first traces, a dielectric layer is formed over the plurality of first microelectronic elements. After thinning the dielectric layer, a plurality of second microelectronic elements are aligned and joined with the structure such that front faces of the second microelectronic elements are facing the rear faces of the plurality of first microelectronic elements. Processing is repeated to form the desirable number of layers of microelectronic elements. In one embodiment, the stacked layers of microelectronic elements may be notched at dicing lines to expose edges of traces, which may then be electrically connected to leads formed in the notches. Individual stacked microelectronic units may be separated from the stacked microelectronic assembly by any suitable dicing, sawing or breaking technique.
摘要:
A microelectronic assembly includes first and second stacked microelectronic elements, each having spaced apart traces extending along a front face and beyond at least a first edge thereof. An insulating region can contact the edges of each microelectronic element and at least portions of the traces of each microelectronic element extending beyond the respective first edges. The insulating region can define first and second side surfaces adjacent the first and second edges of the microelectronic elements. A plurality of spaced apart openings can extend along a side surface of the microelectronic assembly. Electrical conductors connected with respective traces can have portions disposed in respective openings and extending along the respective openings. The electrical conductors may extend to pads or solder balls overlying a face of one of the microelectronic elements.
摘要:
A microelectronic assembly includes first and second stacked microelectronic elements, each having spaced apart traces extending along a front face and beyond at least a first edge thereof. An insulating region can contact the edges of each microelectronic element and at least portions of the traces of each microelectronic element extending beyond the respective first edges. The insulating region can define first and second side surfaces adjacent the first and second edges of the microelectronic elements. A plurality of spaced apart openings can extend along a side surface of the microelectronic assembly. Electrical conductors connected with respective traces can have portions disposed in respective openings and extending along the respective openings. The electrical conductors may extend to pads or solder balls overlying a face of one of the microelectronic elements.
摘要:
A microelectronic assembly includes first and second stacked microelectronic elements, each having spaced apart traces extending along a front face and beyond at least a first edge thereof. An insulating region can contact the edges of each microelectronic element and at least portions of the traces of each microelectronic element extending beyond the respective first edges. The insulating region can define first and second side surfaces adjacent the first and second edges of the microelectronic elements. A plurality of spaced apart openings can extend along a side surface of the microelectronic assembly. Electrical conductors connected with respective traces can have portions disposed in respective openings and extending along the respective openings. The electrical conductors may extend to pads or solder balls overlying a face of one of the microelectronic elements.
摘要:
A stacked microelectronic assembly is fabricated from a structure which includes a plurality of first microelectronic elements having front faces bonded to a carrier. Each first microelectronic element may have a first edge and a plurality of first traces extending along the front face towards the first edge. After exposing at least a portion of the first traces, a dielectric layer is formed over the plurality of first microelectronic elements. After thinning the dielectric layer, a plurality of second microelectronic elements are aligned and joined with the structure such that front faces of the second microelectronic elements are facing the rear faces of the plurality of first microelectronic elements. Processing is repeated to form the desirable number of layers of microelectronic elements. In one embodiment, the stacked layers of microelectronic elements may be notched at dicing lines to expose edges of traces, which may then be electrically connected to leads formed in the notches. Individual stacked microelectronic units may be separated from the stacked microelectronic assembly by any suitable dicing, sawing or breaking technique.
摘要:
Unfavorable interactions of ferroelectric dielectric layers with silicon, intermetallic dielectrics, and other materials in metal-oxide semiconductor devices have discouraged the use of ferroelectric memory devices. This invention provides a zirconium titanate barrier layer with high insulating and low leakage characteristics. The barrier layer is not reactive with silicon or other materials used in metal-ferroelectric-semiconductor devices. These thermally stable layers should facilitate the integration of ferroelectric materials into memory and other semiconductor devices.
摘要:
III-V based compounds are etched to produce smooth sidewalls for electro-optical applications using BCl3 together with chemistries of CH4 and H2 in RIE and/or ICP systems. HI or IBr or some combination of group VII gaseous species (Br, F, I) may be added in accordance with the invention.
摘要:
A photonic crystal optical temperature measuring system and a method for measuring the temperature of an object. The photonic crystal optical temperature measuring system has at least one photonic crystal temperature sensor having a resonant cavity, the resonant frequency of which is a function of the temperature of the resonant cavity.
摘要:
A means to minimize physical distortion and modifications in the electrical properties of ferroelectric films incorporated into semiconductor devices is proposed. By introducing crystallographic texture into these ferroelectric films, the piezoelectric coefficient of the material can be minimized, reducing the interaction between a voltage across and mechanical stress on the film. In addition to having low piezoelectric coefficients, rhombohedral lead zirconate titanate films oriented along (111) exhibit low coercive fields and high remnant polarization, increasing their usefulness in layered semiconductor devices.
摘要:
Photonic crystal sensors may be created from two and three dimensional photonic crystals by introducing defects. The localization of the optical field in the defect region affords the ability to sense small volumes of analyte.