摘要:
The invention relates to a monolithic integrated semiconductor structure comprising a carrier layer on the basis of doped Si or doped GaP and a III/V semiconductor disposed thereupon and having the composition GaxInyNaAsbPcSbd, wherein x=70-100 mole-%, y=0-30 mole-%, a=0.5-15 mole-%, b=67.5-99.5 mole-%, c=0-32.0 mole-% and d=0-15 mole-%, wherein the total of x and y is always 100 mole-%, wherein the total of a, b, c and d is always 100 mole-%, and wherein the ratio of the totals of x and y on the one hand and of a to d on the other hand is substantially 1:1, to methods for the production thereof, new semiconductors, the use thereof for the production of luminescence diodes and laser diodes or also modulator and detector structures, which are monolithically integrated in integrated circuits on the basis of the Si or GaP technology.
摘要翻译:本发明涉及一种单片集成半导体结构,其包括基于掺杂的Si或掺杂GaP的载流子层和布置在其上的III / V半导体,其组成为Ga x In y y 其中x = 70-100摩尔%,y为0〜 = 0-30摩尔%,a = 0.5-15摩尔%,b = 67.5-99.5摩尔%,c = 0-32.0摩尔%和d = 0-15摩尔%,其中x和 y总是100摩尔%,其中a,b,c和d的总和总是100摩尔%,另一方面,x和y的总和与a的总和的比例 基本上是1:1,其制造方法,新的半导体,其用于生产发光二极管和激光二极管的用途,或者也是基于Si或GaP单片集成在集成电路中的调制器和检测器结构 技术。
摘要:
The invention relates to a monolithic integrated semiconductor structure comprising a carrier layer on the basis of doped Si or doped GaP and a III/V semiconductor disposed thereupon and having the composition GaxInyNaAsbPcSbd, wherein x=70-100 mole-%, y=0-30 mole-%, a=0.5-15 mole-%, b=67.5-99.5 mole-%, c=0-32.0 mole-% and d=0-15 mole-%, wherein the total of x and y is always 100 mole-%, wherein the total of a, b, c and d is always 100 mole-%, and wherein the ratio of the totals of x and y on the one hand, and of a to d on the other hand, is substantially 1:1, to methods for the production thereof, new semiconductors, the use thereof for the production of luminescence diodes and laser diodes or also modulator and detector structures, which are monolithically integrated in integrated circuits on the basis of the Si or GaP technology.
摘要:
Tantalum and niobium compounds having the general formula (I) and their use for the chemical vapour deposition process are described: wherein M stands for Nb or Ta, R1 and R2 C1 to C12 alkyl, C5 to C12 cycloalkyl, C6 to C10 aryl radicals, 1-alkenyl, 2-alkenyl, 3-alkenyl, triorganosilyl radicals —SiR3, or amino radicals NR2 R3 is C1 to C8 alkyl, C5 to C10 cycloalkyl, C6 to C14 aryl radical, or SiR3 or NR2, R4 denotes Cl, Br, I, NIH—R5 where R5 is C1 to C8 alkyl, C5 to C10 cycloalkyl or C6 to C10 aryl radical, or O—R6 where R6=optionally substituted C1 to C11 alkyl, C5 to C10 cycloalkyl, C6 to C10 aryl radical, or —SiR3, or BH4, or an allyl radical, or an indenyl radical, or an benzyl radical, or an cyclopentadienyl radical, or —NIR—NR′R″ (hydrazido(-1), wherein R, R′ and R″ have the aforementioned meaning of R, or CH2SiMe3, pseudohalide, or silylamide —N(SiMe3)2, and R7 and R8 are H, C1 to C12 alkyl, C5 to C12 cycloalkyl or C6 to C10 aryl radicals.
摘要:
The present invention relates to special, novel tantalum and niobium compounds, the use thereof for the deposition of tantalum- or niobium-containing layers by means of chemical vapour deposition and the tantalum- or niobium-containing layers produced by this process.
摘要:
Tantalum and niobium compounds having the general formula (I) and their use for the chemical vapour deposition process are described: wherein M stands for Nb or Ta, R1 and R2 mutually independently denote optionally substituted C1 to C12 alkyl, C5 to C12 cycloalkyl, C6 to C10 aryl radicals, 1-alkenyl, 2-alkenyl, 3-alkenyl, triorganosilyl radicals —SiR3, or amino radicals NR2 where R═C1 to C4 alkyl, R3 denotes an optionally substituted C1 to C8 alkyl, C5 to C10 cycloalkyl, C6 to C14 aryl radical, or SiR3 or NR2, R4 denotes halogen from the group comprising Cl, Br, I, or NH—R5 where R5═optionally substituted C1 to C8 alkyl, C5 to C10 cycloalkyl or C6 to C10 aryl radical, or O—R6 where R6=optionally substituted C1 to C11 alkyl, C5 to C10 cycloalkyl, C6 to C10 aryl radical, or —SiR3, or BH4, or an optionally substituted allyl radical, or an indenyl radical, or an optionally substituted benzyl radical, or an optionally substituted cyclopentadienyl radical, or —NR—NR′R″ (hydrazido(−1), wherein R, R′ and R″ have the aforementioned meaning of R, or CH2SiMe3, pseudohalide (e.g. —N3), or silylamide —N(SiMe3)2, R7 and R8 mutually independently denote H, optionally substituted C1 to C12 alkyl, C5 to C12 cycloalkyl or C6 to C10 aryl radicals.