摘要:
Shallow trench isolation is combined with optional deep trenches that are self-aligned with the shallow trenches, at the corners of the shallow trenches, and have a deep trench width that is controlled by the thickness of a temporary sidewall deposited in the interior of the shallow trench and is limited by the sidewall deposition thickness of the deep trench fill.
摘要:
A method for forming a thermally stable ohmic contact structure that includes a region of monocrystalline semiconductor and a region of polycrystalline semiconductor. At least one region of dielectric material is formed between at least a portion of the region of monocrystalline semiconductor and the region of polycrystalline semiconductor, thereby controlling grain growth of the polycrystalline semiconductor.
摘要:
A silicon-on-insulation (SOI) body contact is formed within a device region of an SOI substrate so that no space of the SOI substrate is wasted for implementing a body contact. The body contact is formed by epitaxially growing silicon and depositing polysilicon. An electrical device can be formed to overlie the body contact. Thus, no additional circuitry or conductive path is required to electrically connect a body contact and a device region. Also, the body contact provides a predictable electrical characteristics without sacrificing the benefits attained from using the SOI substrate and conservation surface space on the semiconductor die.
摘要:
A method for forming a semiconductor devices structure includes providing a semiconductor substrate, forming a deep trench continuously in the substrate to separate a first region from a second region, and then forming a silicon-on-insulator region in the first region while maintaining a non-silicon-on-insulator region in the second region. The deep trench has a depth which is at least as deep as the depth of the buried oxide in the substrate. The invention also includes a device structure resulting from the method.
摘要:
A structure forming a metal-insulator-metal (MIM) trench capacitor is disclosed. The structure comprises a multi-layer substrate having a metal layer and at least one dielectric layer. A trench is etched into the substrate, passing through the metal layer. The trench is lined with a metal material that is in contact with the metal layer, which comprises a first node of a capacitor. A dielectric material lines the metal material in the trench. The trench is filled with a conductor. The dielectric material that lines the metal material separates the conductor from the metal layer and the metal material lining the trench. The conductor comprises a second node of the capacitor.
摘要:
A semiconductor structure and method of fabricating the same are disclosed. In an embodiment, the structure includes a first substrate having a buried plate or plates in the substrate. Each buried plate includes at least one buried plate contact, and a plurality of deep trench capacitors disposed about the at least one buried plate contact. A first oxide layer is disposed over the first substrate. The deep trench capacitors and buried plate contacts in the first substrate may be accessed for use in a variety of memory and decoupling applications.
摘要:
Embedded DRAM MOSFETs including an array NFET having a gate stack comprising a high-K dielectric layer upon which is deposited a first metal oxide layer (CD1) then a conductive layer (TiN), and then a polysilicon layer (Poly). A logic PFET having substantially the same gate stack as the array NFET, and a logic NFET having a third gate stack comprising the high-K dielectric layer upon which is deposited the conductive layer (TiN) and then the polysilicon layer (Poly), without the first metal oxide layer (CD1) between the high-K dielectric layer and the conductive layer (TiN). The array NFET may therefore have a higher gate stack work function than the logic NFET, but substantially the same gate stack work function as the logic PFET.
摘要:
A deep trench is formed to a depth midway into a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A top semiconductor layer is laterally recessed by an isotropic etch that is selective to the buried insulator layer. The deep trench is then etched below a bottom surface of the buried insulator layer. Ion implantation is performed at an angle into the deep trench to dope the sidewalls of the deep trench beneath the buried insulator layer, while the laterally recessed sidewalls of the top semiconductor layer are not implanted with dopant ions. A node dielectric and trench fill materials are deposited into the deep trench. A buried strap has an upper buried strap sidewall that is offset from a lower buried strap sidewall and a deep trench sidewall.
摘要:
Embedded DRAM MOSFETs including an array NFET having a gate stack comprising a high-K dielectric layer upon which is deposited a first metal oxide layer (CD1) then a conductive layer (TiN), and then a polysilicon layer (Poly). A logic PFET having substantially the same gate stack as the array NFET, and a logic NFET having a third gate stack comprising the high-K dielectric layer upon which is deposited the conductive layer (TiN) and then the polysilicon layer (Poly), without the first metal oxide layer (CD1) between the high-K dielectric layer and the conductive layer (TiN). The array NFET may therefore have a higher gate stack work function than the logic NFET, but substantially the same gate stack work function as the logic PFET.
摘要:
Disclosed herein are embodiments of a deep trench capacitor structure and a method of forming the structure that incorporates a buried capacitor plate contact that is simultaneously formed using an adjacent deep trench. This configuration eliminates the need for additional photolithographic processing, thereby, optimizing process windows. This configuration further eliminates the need to form the deep trench capacitor through an N-doped diffusion region connector and, thereby, allows for greater design flexibility when connecting the deep trench capacitor to another integrated circuit structure (e.g., a memory cell or decoupling capacitor array). Also, disclosed herein are embodiments of another integrated circuit structure and method, and more specifically, a memory cell (e.g., a static random access memory (SRAM) cell)) and method of forming the memory cell that incorporates one or more of these deep trench capacitors in order to minimize or eliminate soft errors.