摘要:
A method patterns pairs of semiconducting fins on an insulator layer and then patterns a linear gate conductor structure over and perpendicular to the fins. Next, the method patterns a mask on the insulator layer adjacent the fins such that sidewalls of the mask are parallel to the fins and are spaced from the fins a predetermined distance. The method performs an angled impurity implant into regions of the fins not protected by the gate conductor structure and the mask. This process forms impurity concentrations within the fins that are asymmetric and that mirror one another in adjacent pairs of fins.
摘要:
A method patterns pairs of semiconducting fins on an insulator layer and then patterns a linear gate conductor structure over and perpendicular to the fins. Next, the method patterns a mask on the insulator layer adjacent the fins such that sidewalls of the mask are parallel to the fins and are spaced from the fins a predetermined distance. The method performs an angled impurity implant into regions of the fins not protected by the gate conductor structure and the mask. This process forms impurity concentrations within the fins that are asymmetric and that mirror one another in adjacent pairs of fins.
摘要:
Device structures and design structures for a static random access memory. The device structure includes a well of a first conductivity type in a semiconductor layer, first and second deep trench isolation regions in the semiconductor layer that laterally bound a device region in the well, and first and second pluralities of doped regions of a second conductivity type in the first device region. A shallow trench isolation region extends laterally across in the device region to connect the first and second deep trench isolation regions, and is disposed in the device region between the first and second pluralities of doped regions. The shallow trench isolation region extends from the top surface into the semiconductor layer to a first depth such that the well is continuous beneath the shallow trench isolation region. A gate stack controls carrier flow between a pair of the first plurality of doped regions.
摘要:
A low power maskless inter-well deep trench isolation structure and methods of manufacture such structure are provided. A method includes depositing a plurality of layers over a substrate, and forming a layer over the plurality of layers. The method also includes forming well structures in the substrate, and forming sidewall spacers at opposing sides of the layer. The method further includes forming a self-aligned deep trench in the substrate to below the well structures, by removing the sidewall spacers and portions of the substrate aligned with an opening formed by the removal of the sidewall spacers. The method also includes forming a shallow trench in alignment with the deep trench. The method further includes forming shallow trench isolation structures and deep trench isolation structures by filling the shallow trench and the deep trench with insulator material.
摘要:
Methods for fabricating dual-depth trench isolation regions for a memory cell. First and second deep trench isolation regions are formed in the semiconductor layer that laterally bound a device region in a well of a first conductivity type in the semiconductor layer. First and second pluralities of doped regions of a second conductivity type are formed in the device region. A shallow trench isolation region is formed that extends laterally across the device region from the first deep trench isolation region to the second deep trench isolation region. The shallow trench isolation region is disposed in the device region between the first and second pluralities of doped regions. The shallow trench isolation region extends into the semiconductor layer to a depth such that the well is continuous beneath the shallow trench isolation region. A gate stack controls carrier flow between a pair of the first plurality of doped regions.
摘要:
A high density, asymmetric, butted junction CMOS inverter, formed on an SOI substrate, may include: an asymmetric p-FET that includes a halo implant on only a source side of the p-FET; an asymmetric n-FET that includes a halo implant on only a source side of the n-FET; and a butted junction comprising an area of said SOI substrate where a drain region of the asymmetric n-FET and a drain region of the asymmetric p-FET are in direct physical contact. Asymmetric halo implants may be formed by a sequential process of covering a first FET of the CMOS inverter with an ion-absorbing structure and applying angled ion radiation to only the source side of the second FET, removing the ion-absorbing structure, covering the first FET with a second ion-absorbing structure, and applying angled ion radiation to only the source side of the second FET. A layout display of CMOS integrated circuit may require one ground rule for the high density, asymmetric butted junction CMOS inverter and another ground rule for other CMOS circuits.
摘要:
A multi-gate field effect transistor apparatus and method for making same. The apparatus includes a source terminal, a drain terminal, and a gate terminal which includes a tapered-gate profile. A method for designing a multi-gate field effect transistor includes arranging a source terminal, a drain terminal and a gate terminal with a tapered-gate profile to create a wider gate width on a bottom of a fin.
摘要:
A memory cell, an array of memory cells, and a method for fabricating a memory cell with multigate transistors such as fully depleted finFET or nano-wire transistors in embedded DRAM. The memory cell includes a trench capacitor, a non-planar transistor, and a self-aligned silicide interconnect electrically coupling the trench capacitor to the non-planar transistor.
摘要:
A FinFET device with an independent control gate, including: a silicon-on-insulator substrate; a non-planar multi-gate transistor disposed on the silicon-on-insulator substrate, the transistor comprising a conducting channel wrapped around a thin silicon fin; a source/drain extension region; an independently addressable control gate that is self-aligned to the fin and does not extend beyond the source/drain extension region, the control gate comprising: a thin layer of silicon nitride; and a plurality of spacers.
摘要:
Multiple threshold voltage (Vt) field-effect transistor (FET) devices and techniques for the fabrication thereof are provided. In one aspect, a FET device is provided including a source region; a drain region; at least one channel interconnecting the source and drain regions; and a gate, surrounding at least a portion of the channel, configured to have multiple threshold voltages due to the selective placement of at least one band edge metal throughout the gate.