Abstract:
A vehicle suspension system for use with a vehicle includes a first hydraulic cylinder, a second hydraulic cylinder, and a fluid circuit. The first hydraulic cylinder and the second hydraulic cylinder each include an upper chamber and a lower chamber. The fluid circuit is hydraulically coupled to the first hydraulic cylinder and the second hydraulic cylinder and includes a valve that is movable between a first position and a second position. When the valve is in the first position, the upper and lower chambers of each hydraulic cylinder are hydraulically coupled to the opposite chamber of the other cylinder. When the valve is in the second position, the upper chamber of each hydraulic cylinder is coupled to the lower chamber of the same cylinder. The valve is configured to move between the first position and the second position in response to manual input.
Abstract:
A vehicle subassembly includes first and second hydraulic cylinders each having an upper chamber and a lower chamber. A fluid circuit is hydraulically connected to the first and second hydraulic cylinders and includes a valve movable between a first position where the upper chamber of the first hydraulic cylinder and the lower chamber of the second hydraulic cylinder are hydraulically connected and the lower chamber of the first hydraulic cylinder and the upper chamber of the second cylinder are hydraulically connected, and a second position where the upper chamber and the lower chamber of the first hydraulic cylinder are hydraulically connected and the upper chamber and lower chamber of the second hydraulic cylinder are hydraulically connected. A control unit is operable to position the valve in at least one of the first position and the second position based on an operating variable of the vehicle.
Abstract:
A vehicle steering system includes a steering input device, a front steering subsystem, a rear steering subsystem, a first force transmission route, a steering control mechanism, a second force transmission route, and a third force transmission route. The front steering subsystem is coupled to front motive members to steer the front motive members based upon movement of a front steering subsystem input shaft. The rear steering subsystem is coupled to rear motive members to steer the rear motive members based upon movement of a rear steering subsystem input shaft. The first force transmission route extends from the steering input device to the front steering subsystem input shaft, wherein force is transmitted from the input device to the front steering subsystem input shaft to steer the front motive members. The steering control mechanism has a movable input member and a movable output member. The movable input member is movable through a first distance without transmitting force to the output member and is movable through a second distance in which force is transmitted to the output member to move the output member. The second force transmission route extends from the steering input device to the input member, wherein force is transmitted from the input device to the input member to move the input member. The third force transmission route extends from the output member to the rear steering subsystem input shaft to move the rear steering subsystem input shaft and to steer the rear motive members.
Abstract:
A non-pneumatic tire for supporting a load by working in tension comprising a generally annular inner ring, a generally annular outer ring, and an interconnected web having a plurality of web elements and comprising a plurality of generally polygonal openings. Web elements are sized, oriented and comprised of a material that facilitates buckling when subjected to a compressive load. By buckling, those elements in a deformed portion of the tire between a wheel and a footprint region where the tire contacts a surface can assume a significantly reduced portion of the load, if any. This causes web elements in other portions of the interconnected web to operate in tension to support the load.
Abstract:
An agricultural implement is provided that includes a hitch assembly configured to couple the agricultural implement to a tow vehicle, and a carrier frame pivotally coupled to the hitch assembly. The agricultural implement also includes a pair of wheel assemblies each rotatably coupled to the carrier frame by a respective pivot joint. The agricultural implement further includes an actuator assembly configured to rotate each wheel assembly about the respective pivot joint in a first direction by applying a first torque, and to rotate each wheel assembly about the respective pivot joint in a second direction, opposite the first direction, by applying a second torque. A magnitude of the first torque and a magnitude of the second torque are substantially equal.
Abstract:
A run-flat device, which is inserted into pneumatic tires to allow mobility in the event of pressure loss in the pneumatic tire, can comprise an inner ring, outer ring, and an interconnected web connecting the two. The run-flat device can support an applied load by working in tension and compression.
Abstract:
An agricultural implement is provided that includes a hitch assembly configured to couple the agricultural implement to a tow vehicle. The agricultural implement also includes a carrier frame pivotally coupled to the hitch assembly by a main pivot joint such that the main pivot joint resists substantially all lateral loads between the carrier frame and the hitch assembly. The agricultural implement further includes a pair of wheel assemblies each rotatably coupled to the carrier frame by a respective knuckle pivot joint, and an actuator assembly configured to rotate each wheel assembly about the respective knuckle pivot joint while the agricultural implement is in both a working and transport position.
Abstract:
A run-flat device, which is inserted into pneumatic tires to allow mobility in the event of pressure loss in the pneumatic tire, can comprise an inner ring, outer ring, and an interconnected web connecting the two. The run-flat device can support an applied load by working in tension and compression.
Abstract:
A non-pneumatic tire for supporting a load by working in tension comprising a generally annular inner surface, a generally annular outer ring, and an interconnected web having a plurality of web elements and comprising a plurality of generally polygonal openings. Web elements are sized, oriented and comprised of a material that facilitates buckling when subjected to a compressive load. By buckling, those elements in a deformed portion of the tire between a hub and a footprint region where the tire contacts a surface may assume a significantly reduced portion of the load, if any. This causes web elements in other portions of the interconnected web to operate in tension to support the load. Since the tire is non-pneumatic, it may be easier to maintain and may have a longer life than standard pneumatic tires since it eliminates the possibility of blowouts, flat tires, or tires operating with low air pressure. By virtue of the portion of the tire in the footprint region not bearing a significant portion of the load, non-pneumatic tire may also exhibit a more comfortable ride subject to less noise and vibration and improved handling capabilities.