摘要:
A computer system includes a simultaneous multi-threading processor and memory in operable communication with the processor. The processor is configured to perform a method including running multiple threads simultaneously, detecting a hardware error in one or more hardware structures of the processing circuit, and identifying one or more victim threads of the multiple threads. The processor is further configured to identify a plurality of hardware structures associated with execution of the one or more victim threads, isolate the one or more victim threads from the rest of the multiple threads by preventing access to the plurality of hardware structures by the multiple threads, flush the one or more victim threads by resetting hardware states of the plurality of hardware structures, and restore the one or more victim threads by restoring the plurality of hardware structures to a known safe state.
摘要:
Embodiments of the invention relate to process identifier (PID) based cache information transfer. An aspect of the invention includes sending, by a first core of a processor, a PID associated with a cache miss in a first local cache of the first core to a second cache of the processor. Another aspect of the invention includes determining that the PID associated with the cache miss is listed in a PID table of the second cache. Yet another aspect of the invention includes based on the PID being listed in the PID table of the second cache, determining a plurality of entries in a cache directory of the second cache that are associated with the PID. Yet another aspect of the invention includes pushing cache information associated with each of the determined plurality of entries in the cache directory from the second cache to the first local cache.
摘要:
A re-characterization process is provided that adjusts one or more operating parameters of a processor to improve the health (e.g., reduce errors) of the processor. The parameters include voltage and/or clock frequency, as examples. The processor can be an inactive or active processor for which the re-characterization process is performed. It is performed, in one instance, by a hardware controller in real-time.
摘要:
A system for data operand fetching control includes a computer processor that includes a control unit for determining memory access operations. The control unit is configured to perform a method. The method includes calculating a summation weight value for each instruction in a pipeline, the summation weight value calculated as a function of branch uncertainty and a pendency in which the instruction resides in the pipeline relative to other instructions in the pipeline. The method also includes mapping the summation weight value of a selected instruction that is attempting to access system memory to a memory access control, each memory access control specifying a manner of handling data fetching operations. The method further includes performing a memory access operation for the selected instruction based upon the mapping.
摘要:
Threads of a computing environment are managed to improve system performance. Threads are migrated between processors to take advantage of single thread processing mode, when possible. As an example, inactive threads are migrated from one or more processors, potentially freeing-up one or more processors to execute an active thread. Active threads are migrated from one processor to another to transform multiple threading mode processors to single thread mode processors.
摘要:
A technique is provided for cache management of a cache. The processing circuit determines a miss count and a hit position field during a previous execution of an instruction requesting that a data element be stored in a cache. The miss count and the hit position field are stored for a data element corresponding to an instruction that requests storage of the data element. The processing circuit places the data element in a hierarchical order based on the miss count and/or the hit position field. The hit position field includes a hierarchical position related to the data element in the cache.
摘要:
Threads of a computing environment are managed to improve system performance. Threads are migrated between processors to take advantage of single thread processing mode, when possible. As an example, inactive threads are migrated from one or more processors, potentially freeing-up one or more processors to execute an active thread. Active threads are migrated from one processor to another to transform multiple threading mode processors to single thread mode processors.
摘要:
A re-characterization process is provided that adjusts one or more operating parameters of a processor to improve the health (e.g., reduce errors) of the processor. The parameters include voltage and/or clock frequency, as examples. The processor can be an inactive or active processor for which the re-characterization process is performed. It is performed, in one instance, by a hardware controller in real-time.
摘要:
A computer program product for performing error recovery is configured to perform a method that includes creating, by a processor, a recovery checkpoint. The processor is dynamically switched into a non-recoverable processing mode of operation based on creating the software recovery checkpoint. The non-recoverable processing mode of operation is a mode in which a subset of hardware error recovery resources are powered-down or re-purposed for instruction processing. It is determined, during the non-recoverable processing mode of operation, that a new software recovery checkpoint is required. Based on the determining that a new software recovery checkpoint is required, the processor is dynamically switched into a recoverable processing mode of operation. The recoverable processing mode of operation is a mode in which hardware error recovery resources, including at least one of the hardware error recovery resources in the subset, are purposed for hardware error recovery operations.
摘要:
Embodiments relate to instruction filtering. An aspect includes a system for instruction filtering. The system includes memory configured to store instructions accessible by a processor, and the processor includes a tracking array and a tracked instruction logic block. The processor is configured to perform a method including detecting a tracked instruction in an instruction stream, and storing an instruction address of the tracked instruction in the tracking array based on detecting and executing the tracked instruction. The method also includes accessing the tracking array based on an address of instruction data of a subsequently fetched instruction to locate the instruction address of the tracked instruction in the tracking array as an indication of the tracked instruction. Instruction text of the subsequently fetched instruction is marked to indicate previous execution based on the tracking array. An action of the tracked instruction logic block is prevented based on the marked instruction text.