Abstract:
Systems and methods to are disclosed to determine a sleep disordered breathing parameter of a patient, including receiving respiration information of the patient and temperature information of the patient and to determine the sleep disordered breathing parameter of the patient using the received respiration information and temperature information of the patient.
Abstract:
An apparatus comprises plurality of sensors and a processor. Each sensor provides a sensor signal that includes physiological information and at least one sensor is implantable. The processor includes a physiological change event detection module that detects a physiological change event from a sensor signal and produces an indication of occurrence of one or more detected physiological change events, and a heart failure (HF) detection module. The HF detection module determines, using a first rule, whether the detected physiological change event indicative of a change in HF status of a subject, determines whether to override the first rule HF determination using a second rules, and declares whether the change in HF status occurred according to the first and second rules.
Abstract:
Methods and devices for configuring the use of a motion sensor in an implantable cardiac device. The electrical signals of the patient's heart are observed and may be correlated to the physical motion of the heart as detected by the motion sensor of the implantable cardiac device in order to facilitate temporal configuration of motion sensor data collection that avoids detecting cardiac motion in favor of overall motion of the patient.
Abstract:
Systems and methods for detecting cardiac conditions such as events indicative of worsening of heart failure (HF) are described. A system can receive a physiological signal from a patient, transform one or more first portions of the physiological signal into respective one or more baseline statistical values, transform one or more second portions of the physiological signal into one or more historical extreme values, and generate one or more reference values of a physiologic parameter using the baseline statistical values and the historical extreme values. The system can transform one or more third signal portions of the physiological signal into respective one or more short-term values, and produce a cardiac condition indicator using a combination of relative differences between the short-term values and the corresponding reference values. The system can output the cardiac condition indicator, or deliver therapy according to the cardiac condition indicator.
Abstract:
Patient posture information can be received, such as to indicate a change in patient posture by at least a threshold amount. A transient response signal indicative of a change in a physiological parameter can be received at multiple instances near a change in patient posture. Waveform morphology features can be extracted from a transient response signal and used to provide an indication of a cardiac status, such as a heart failure status.
Abstract:
Systems and methods for monitoring pulmonary edema or other thoracic fluid status in a subject use thoracic impedance histogram information. An internal or external processor circuit receives the thoracic impedance histogram information and uses it to compute and provide a lung fluid status indication. The thoracic impedance histogram information can include a count, mean or median of a histogram bin or subrange of bins within the histogram range.
Abstract:
Methods and devices detect context related to a patient when monitoring a physiological condition of the patient and/or when applying one or more modes of therapy. The context may be a patient context such as posture or an environmental context such as ambient conditions. The context may be used in various ways in relation to the physiological measurement, such as to control when the physiological measurements are made, to appropriately flag physiological measurements, to be recorded in association with the physiological measurements, and/or to correct the physiological measurements based on a reference context. A device such as a beacon transmitter issued in detecting the context and a measurement device such as an implantable cardiovascular device is used to capture the physiological measurements.
Abstract:
A processor circuit can be configured to obtain a first multidimensional vector. The first multidimensional vector can include dimensions corresponding to respective first conductivity characteristics obtained from different implantable electrode configurations associated with a subject. The processor circuit can also be configured to obtain a second multidimensional vector or vector space. The second multidimensional vector or vector space can include dimensions corresponding to respective second conductivity characteristics obtained from such different electrode configurations associated with the same or a different subject. The processor circuit can also provide a physiological status indicator that can be obtained at least in part by performing a vector comparison of the first multidimensional vector to the second multidimensional vector space or vector.
Abstract:
A system and method automatically calibrate a posture sensor, such as by detecting a walking state or a posture change. For example, a three-axis accelerometer can be used to detect a patient's activity or posture. This information can be used to automatically calibrate subsequent posture or acceleration data.
Abstract:
Systems, devices and methods for defining, identifying and using health-related significant events are disclosed. One aspect is a programmable device having machine executable instructions for performing a method to assist with managing a patient's health. In various embodiments, at least one previously-defined event is detected based on a number of acquired health-related parameters. The at least one detected event is recorded with an associated time when the at least one detected significant event occurred. An action is triggered based on the at least one detected event. The at least one detected event is displayed with at least one trended health-related parameter in a single display area. Other aspects and embodiments are provided herein.